ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics

42   0   0.0 ( 0 )
 نشر من قبل Tristan Pryer
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in [Gie14]. We prove optimal bounds for the strain in an appropriate norm and suboptimal bounds for the velocity.

قيم البحث

اقرأ أيضاً

We give an a posteriori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key c omponent in the analysis is the reduced relative entropy stability framework developed in [Giesselmann 2014]. This framework allows energy type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions [Makridakis and Nochetto 2006] and a set of elliptic reconstructions [Makridakis and Nochetto 2003] to apply the reduced relative entropy framework in this setting.
118 - Jianfeng Lu , Yulong Lu 2021
This paper analyzes the generalization error of two-layer neural networks for computing the ground state of the Schrodinger operator on a $d$-dimensional hypercube. We prove that the convergence rate of the generalization error is independent of the dimension $d$, under the a priori assumption that the ground state lies in a spectral Barron space. We verify such assumption by proving a new regularity estimate for the ground state in the spectral Barron space. The later is achieved by a fixed point argument based on the Krein-Rutman theorem.
We consider semi-discrete discontinuous Galerkin approximations of a general elastodynamics problem, in both {it displacement} and {it displacement-stress} formulations. We present the stability analysis of all the methods in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We include some numerical experiments in three dimensions to verify the theory.
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(varepsilon/H)^{d/2}$; $varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general ela stodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا