ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback control of coherent spin states using weak nondestructive measurements

199   0   0.0 ( 0 )
 نشر من قبل Thomas Vanderbruggen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the decoherence of a pseudo-spin ensemble under collective random rotations, and study, both theoretically and experimentally, how a nondestructive measurement combined with real-time feedback correction can protect the state against such a decoherence process. We theoretically characterize the feedback efficiency with different parameters --- coherence, entropy, fidelity --- and show that a maximum efficiency is reached in the weak measurement regime, when the projection of the state induced by the measurement is negligible. This article presents in detail the experimental results published in [Phys. Rev. Lett. textbf{110}, 210503 (2013)], where the feedback scheme stabilizes coherent spin states of trapped ultra-cold atoms, and nondestructively probed with a dispersive optical detection. In addition, we study the influence of several parameters, such as atom number and rotation angle, on the performance of the method. We analyze the various decoherence sources limiting the feedback efficiency and propose how to mitigate their effect. The results demonstrate the potential of the method for the real-time coherent control of atom interferometers.



قيم البحث

اقرأ أيضاً

We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high- or low-energy state, where, in equilibrium with measurement back-action heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field.
A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the di sturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.
The first step in the coherent control of a photoinduced binary reaction is bond making or photoassociation. We have recently demonstrated coherent control of bond making in multi-photon femtosecond photoassociation of hot magnesium atoms, using line arly chirped pulses [Levin et al., arXiv:1411.1542]. The detected yield of photoassociated magnesium dimers was enhanced by positively chirped pulses which is explained theoretically by a combination of purification and chirp-dependent Raman transitions. The yield could be further enhanced by pulse optimization resulting in pulses with an effective linear chirp and a sub-pulse structure, where the latter allows for exploiting vibrational coherences. Here, we systematically explore the efficiency of phase-shaped pulses for the coherent control of bond making, employing a parametrization of the spectral phases in the form of cosine functions. We find up to an order of magnitude enhancement of the yield compared to the unshaped transform-limited pulse. The highly performing pulses all display an overall temporally increasing instantaneous frequency and are composed of several overlapping sub-pulses. The time delay between the first two sub-pulses almost perfectly fits the vibrational frequency of the generated intermediate wavepacket.These findings are in agreement with chirp-dependent Raman transitions and exploitation of vibrational dynamics as underlying control mechanisms.
We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optic al measurements with negligible back-action and coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary noise model and characterized in terms of the trade-off between information retrieval and destructivity from the optical probe. We also demonstrate the correction of more general types of collective noise. This technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme, opening the way towards improved atomic sensors.
We show that quantum interference-based coherent control is a highly efficient tool for tuning ultracold molecular collision dynamics, and is free from the limitations of commonly used methods that rely on external electromagnetic fields. By varying {the relative populations and} phases of an initial coherent superpositions of degenerate molecular states, we demonstrate complete coherent control over integral scattering cross sections in the ultracold $s$-wave regime of both the initial and final collision channels. The proposed control methodology is applied to ultracold O$_2$~+~O$_2$ collisions, showing extensive control over $s$-wave spin-exchange cross sections and product branching ratios over many orders of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا