ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsolvability Cores in Classification Problems

16   0   0.0 ( 0 )
 نشر من قبل Hermann K.-G. Walter
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Classification problems have been introduced by M. Ziegler as a generalization of promise problems. In this paper we are concerned with solvability and unsolvability questions with respect to a given set or language family, especially with cores of unsolvability. We generalize the results about unsolvability cores in promise problems to classification problems. Our main results are a characterization of unsolvability cores via cohesiveness and existence theorems for such cores in unsolvable classification problems. In contrast to promise problems we have to strengthen the conditions to assert the existence of such cores. In general unsolvable classification problems with more than two components exist, which possess no cores, even if the set family under consideration satisfies the assumptions which are necessary to prove the existence of cores in unsolvable promise problems. But, if one of the components is fixed we can use the results on unsolvability cores in promise problems, to assert the existence of such cores in general. In this case we speak of conditional classification problems and conditional cores. The existence of conditional cores can be related to complexity cores. Using this connection we can prove for language families, that conditional cores with recursive components exist, provided that this family admits an uniform solution for the word problem.

قيم البحث

اقرأ أيضاً

A notable feature of the TTE approach to computability is the representation of the argument values and the corresponding function values by means of infinitistic names. Two ways to eliminate the using of such names in certain cases are indicated in the paper. The first one is intended for the case of topological spaces with selected indexed denumerable bases. Suppose a partial function is given from one such space into another one whose selected base has a recursively enumerable index set, and suppose that the intersection of base open sets in the first space is computable in the sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable relation between indices of base sets containing the argument value and indices of base sets containing the corresponding function value.This result can be regarded as an improvement of a result of Korovina and Kudinov. The second way is applicable to metric spaces with selected indexed denumerable dense subsets. If a partial function is given from one such space into another one, then, under a semi-computability assumption concerning these spaces, the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable set of quadruples. Any of them consists of an index of element from the selected dense subset in the first space, a natural number encoding a rational bound for the distance between this element and the argument value, an index of element from the selected dense subset in the second space and a natural number encoding a rational bound for the distance between this element and the function value. One of the examples in the paper indicates that the computability of real functions can be characterized in a simple way by using the first way of elimination of the infinitistic names.
In this paper we collect some open set-theoretic problems that appear in the large-scale topology (called also Asymptology). In particular we ask problems about critical cardinalities of some special (large, indiscrete, inseparated) coarse structures on $omega$, about the interplay between properties of a coarse space and its Higson corona, about some special ultrafilters ($T$-points and cellular $T$-points) related to finitary coarse structures on $omega$, about partitions of coarse spaces into thin pieces, and also about coarse groups having some extremal properties.
166 - Olivier Finkel 2008
We study the links between the topological complexity of an omega context free language and its degree of ambiguity. In particular, using known facts from classical descriptive set theory, we prove that non Borel omega context free languages which ar e recognized by Buchi pushdown automata have a maximum degree of ambiguity. This result implies that degrees of ambiguity are really not preserved by the operation of taking the omega power of a finitary context free language. We prove also that taking the adherence or the delta-limit of a finitary language preserves neither unambiguity nor inherent ambiguity. On the other side we show that methods used in the study of omega context free languages can also be applied to study the notion of ambiguity in infinitary rational relations accepted by Buchi 2-tape automata and we get first results in that direction.
Existing formalisms for the algebraic specification and representation of networks of reversible agents suffer some shortcomings. Despite multiple attempts, reversible declensions of the Calculus of Communicating Systems (CCS) do not offer satisfacto ry adaptation of notions that are usual in forward-only process algebras, such as replication or context. They also seem to fail to leverage possible new features stemming from reversibility, such as the capacity of distinguishing between multiple replications, based on how they replicate the memory mechanism allowing to reverse the computation. Existing formalisms disallow the hot-plugging of processes during their execution in contexts that also have a past. Finally, they assume the existence of eternally fresh keys or identifiers that, if implemented poorly, could result in unnecessary bottlenecks and look-ups involving all the threads. In this paper, we begin investigating those issues, by first designing a process algebra endowed with a mechanism to generate identifiers without the need to consult with the other threads. We use this calculus to recast the possible representations of non-determinism in CCS, and as a by-product establish a simple and straightforward definition of concurrency. Our reversible calculus is then proven to satisfy expected properties, and allows to lay out precisely different representations of the replication of a process with a memory. We also observe that none of the reversible bisimulations defined thus far are congruences under our notion of reversible contexts.
77 - Pierre Lescanne 2020
Escalation in games is when agents keep playing forever. Based on formal proofs we claim that if agents assume that resource are infinite, escalation is rational.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا