ترغب بنشر مسار تعليمي؟ اضغط هنا

A Caveat on Building Nonlocal Models of Cosmology

155   0   0.0 ( 0 )
 نشر من قبل Richard Woodard
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. C. Tsamis




اسأل ChatGPT حول البحث

Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Greens function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.



قيم البحث

اقرأ أيضاً

We provide a systematic and updated discussion of a research line carried out by our group over the last few years, in which gravity is modified at cosmological distances by the introduction of nonlocal terms, assumed to emerge at an effective level from the infrared behavior of the quantum theory. The requirement of producing a viable cosmology turns out to be very stringent and basically selects a unique model, in which the nonlocal term describes an effective mass for the conformal mode. We discuss how such a specific structure could emerge from a fundamental local theory of gravity, and we perform a detailed comparison of this model with the most recent cosmological datasets, confirming that it fits current data at the same level as $Lambda$CDM. Most notably, the model has striking predictions in the sector of tensor perturbations, leading to a very large effect in the propagation of gravitational wave (GWs) over cosmological distances. At the redshifts relevant for the next generation of GW detectors such as Einstein Telescope, Cosmic Explorer and LISA, this leads to deviations from GR that could be as large as $80%$, and could be verified with the detection of just a single coalescing binary with electromagnetic counterpart. This would also have potentially important consequences for the search of the counterpart since, for a given luminosity distance to the source, as inferred through the GW signal, the actual source redshift could be significantly different from that predicted by $Lambda$CDM. At the redshifts relevant for advanced LIGO/Virgo/Kagra the effect is smaller, but still potentially observable over a few years of runs at target sensitivity.
150 - Erwan Allys 2017
The current description of fundamental interactions is based on two theories with the status of standard models. The electromagnetic and nuclear interactions are described at a quantum level by the Standard Model of particle physics, using tools like gauge theories and spontaneous symmetry breaking by the Higgs mechanism. The gravitational interaction is described on the other hand by general relativity, based on a dynamical description of space-time at a classical level. Although these models are verified to high precision in the solar system experiments, they suffer from several theoretical weaknesses and a lack of predictive power at the Planck scale as well as at cosmological scales; they are thus not viewed anymore as fundamental theories. As its phenomenology involves both these extreme scales, cosmology is then a good laboratory to probe theories going beyond these standard models. The first part of this thesis focus on cosmic strings, topological defects forming during the spontaneous symmetry breaking of grand unified theories in the early universe. I show especially how to study these defects while taking into account the complete structure of the particles physics models leading to their formation, going beyond the standard descriptions in terms of simplified toy-models. The second part is devoted to the construction and the examination of different theories of modified gravity related to the Galileon model, a model which tries in particular to explain the dark energy phenomenology.
We derive a redshift drift formula for the spherically symmetric inhomogeneous pressure Stephani universes which are complementary to the spherically symmetric inhomogeneous density Lema^itre-Tolman-Bondi models. We show that there is a clear differe nce between redshift drift predictions for these two models as well as between the Stephani models and the standard $Lambda$CDM Friedmann models. The Stephani models have positive drift values at small redshift and behave qualitatively (but not quantitatively) as the $Lambda$CDM models at large redshift, while the drift for LTB models is always negative. This prediction may perhaps be tested in future telescopes such as European Extremely Large Telescope (EELT), Thirty Meter Telescope (TMT), Giant Magellan Telescope (GMT), and especially, in gravitational wave interferometers DECi-Hertz Interferometer Gravitational Wave Observatory and Big Bang Observer (DECIGO/BBO), which aim at low redshift.
We discuss the possibility to implement a viscous cosmological model, attributing to the dark matter component a behaviour described by bulk viscosity. Since bulk viscosity implies negative pressure, this rises the possibility to unify the dark secto r. At the same time, the presence of dissipative effects may alleviate the so called small scale problems in the $Lambda$CDM model. While the unified viscous description for the dark sector does not lead to consistent results, the non-linear behaviour indeed improves the situation with respect to the standard cosmological model.
Cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background (CMB) obtained from the Planck 2015 results are presented. We consider the harmonic attractor model, in wh ich the scalar field has a harmonic potential with curvature ($beta$) in the Einstein frame and the theory relaxes toward the Einstein gravity with time. Analyzing the {it TT}, {it EE}, {it TE} and lensing CMB data from Planck by the Markov chain Monte Carlo method, we find that the present-day deviation from the Einstein gravity (${alpha_0}^2$) is constrained as ${alpha_0}^2<2.5times10^{-4-4.5beta^2} (95.45% {rm C.L.})$ and ${alpha_0}^2<6.3times10^{-4-4.5beta^2} (99.99% {rm C.L.})$ for $0<beta<0.4$. The time variation of the effective gravitational constant between the recombination and the present epochs is constrained as $G_{rm rec}/G_0<1.0056 (95.45% {rm C.L.})$ and $G_{rm rec}/G_0<1.0115 (99.99 %{rm C.L.})$. We also find that the constraints are little affected by extending to nonflat cosmological models because the diffusion damping effect revealed by Planck breaks the degeneracy of the projection effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا