ﻻ يوجد ملخص باللغة العربية
The unusual morphologies of the Andromeda spiral galaxy (M31) and its dwarf companion M32 have been characterized observationally in great detail. The two galaxies apparent proximity suggests that Andromedas prominent star-forming ring as well as M32s compact elliptical structure may result from a recent collision. Here we present the first self-consistent model of the M31-M32 interaction that simultaneously reproduces observed positions, velocities, and morphologies for both galaxies. Andromedas spiral structure is resolved in unprecedented detail, showing that a rare head-on orbit is not necessary to match Andromedas ring-like morphology. The passage of M32 through Andromedas disk perturbs the disk velocity structure. We find tidal stripping of M32s stars to be inefficient during the interaction, suggesting that some cEs are intrinsically compact. Additionally, the orbital solution implies that M32 is currently closer to the Milky Way than models have typically assumed, a prediction that may be testable with upcoming observations.
Tidal debris from infalling satellites can leave observable structure in the phase-space distribution of the Galactic halo. Such substructure can be manifest in the spatial and/or velocity distributions of the stars in the halo. This paper focuses on
Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we investigate radial variations of several initial mass function (IMF) dependent absorption features in M31 and M32. We obtain high signal-to-noise spectra at six pointings along
We report the discovery of a microlensing candidate projected 254 from the center of M32, on the side closest to M31. The blue color (R-I= 0.00 +/- 0.14) of the source argues strongly that it lies in the disk of M31, while the proximity of the line o
We have carried out a survey of compact star clusters (apparent size <3 arcsec) in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.5 arcmin x 28.5 arcmin), covering ~15% of the deprojected galaxy disk area. T
Hot gaseous atmospheres that permeate galaxies and extend far beyond their stellar distribution, where they are commonly referred to as the circumgalactic medium (CGM), imprint important information about feedback processes powered by the stellar pop