ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model

64   0   0.0 ( 0 )
 نشر من قبل Seungwon Baek
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently two groups independently observed unidentified X-ray line signal at the energy 3.55 keV from the galaxy clusters and Andromeda galaxy. We show that this anomalous signal can be explained in annihilating dark matter model, for example, fermionic dark matter model in hidden sector with global $U(1)_X$ symmetry proposed by Weinberg. There are two scenarios for the production of the annihilating dark matters. In the first scenario the dark matters with mass 3.55 keV decouple from the interaction with Goldstone bosons and go out of thermal equilibrium at high temperature ($>$ 1 TeV) when they are still relativistic, their number density per comoving volume being essentially fixed to be the current value. The correct relic abundance of this warm dark matter is obtained by assuming that about ${cal O}(10^3)$ relativistic degrees of freedom were present at the decoupling temperature or alternatively large entropy production occurred at high temperature. In the other scenario, the dark matters were absent at high temperature, and as the universe cools down, the SM particles annihilate or decay to produce the dark matters non-thermally as in `freeze-in scenario. It turns out that the DM production from Higgs decay is the dominant one. In the model we considered, only the first scenario can explain both X-ray signal and relic abundance. The X-ray signal arises through $p$-wave annihilation of dark matter pair into two photons through the scalar resonance without violating the constraints from big bang nucleosynthesis, cosmic microwave background, and astrophysical objects such as red giants or white dwarfs. We also discuss the possibility that the signal may result from a decaying dark matter in a simple extension of Weinberg model.

قيم البحث

اقرأ أيضاً

Recently reported tentative evidence for a gamma-ray line in the Fermi-LAT data is of great potential interest for identifying the nature of dark matter. We compare the implications for decaying and annihilating dark matter taking the constraints fro m continuum gamma-rays, antiproton flux and morphology of the excess into account. We find that higgsino and wino dark matter are excluded, also for nonthermal production. Generically, the continuum gamma-ray flux severely constrains annihilating dark matter. Consistency of decaying dark matter with the spatial distribution of the Fermi-LAT excess would require an enhancement of the dark matter density near the Galactic center.
160 - Ki-Young Choi , Osamu Seto 2014
We consider axino warm dark matter in a supersymmetric axion model with R-parity violation. In this scenario, axino with the mass $m_axinosimeq 7$ keV can decay into photon and neutrino resulting in the X-ray line signal at $3.5$ keV, which might be the origin of unidentified X-ray emissions from galaxy clusters and Andromeda galaxy detected by the XMM-Newton X-ray observatory.
61 - Seungwon Baek 2014
We consider a local $U(1)_{B-L}$ extension of Zee-Babu model to explain the recently observed 3.5 keV X-ray line signal. The model has three Standard model (SM)-singlet Dirac fermions with different $U(1)_{B-L}$ charges. A complex scalar field charge d under $U(1)_{B-L}$ is introduced to break the $U(1)_{B-L}$ symmetry. After $U(1)_{B-L}$ symmetry breaking a remnant discrete symmetry stabilizes the lightest state of the Dirac fermions, which can be a stable dark matter (DM). The second lightest state, if mass splitting with the stable DM is about 3.5 keV, decays dominantly to the stable DM and 3.5 keV photon through two-loop diagrams, explaining the X-ray line signal. Two-loop suppression of the decay amplitude makes its lifetime much longer than the age of the universe and it can be a decaying DM candidate in large parameter region. We also introduce a real scalar field which is singlet under both the SM and $U(1)_{B-L}$ and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of $U(1)_{B-L}$ gauge boson, $Z$, and is suppressed below current experimental bound when $Z$ mass is heavy ($gtrsim 10$ TeV). If the singlet scalar mass is about 0.1-10 MeV, the DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.
We study an exciting dark matter scenario in a radiative neutrino model to explain the X-ray line signal at $3.55$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We show that the requ ired large cross section for the up-scattering process to explain the X-ray line can be obtained via the resonance of the pseudo-scalar. Moreover this model can be compatible with the thermal production of dark matter and the constraint from the direct detection experiment.
65 - Seungwon Baek 2015
We consider an extension of Zee-Babu model to explain the smallness of neutrino masses. (1) We extend the lepton number symmetry of the original model to local $B-L$ symmetry. (2) We introduce three Dirac dark matter candidates with flavor-dependent $B-L$ charges. After the spontaneous breaking of $B-L$, a discrete symmetry $Z_6$ remains, which guarantees the stability of dark matter. Then the model can explain the 3.5 keV X-ray line signal with decaying dark matter. We also introduce a real scalar field which is singlet under both the SM and $U(1)_{B-L}$ and can explain the current relic abundance of the Dirac fermionic DMs. If the mixing with the SM Higgs boson is small, it does not contribute to DM direct detection. The main contribution to the scattering of DM off atomic nuclei comes from the exchange of $U(1)_{B-L}$ gauge boson, $Z$, and is suppressed below current experimental bound when $Z$ mass is heavy ($gtrsim 10$ TeV). If the singlet scalar mass is about 0.1--10 MeV, DM self-interaction can be large enough to solve small scale structure problems in simulations with the cold DM, such as, the core-vs-cusp problem and too-big-to-fail problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا