ترغب بنشر مسار تعليمي؟ اضغط هنا

Electro-osmotic flow through a nanopore

459   0   0.0 ( 0 )
 نشر من قبل Sandip Ghosal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electroosmotic pumping of fluid through a nanopore that traverses an insulating membrane is considered. The density of surface charge on the membrane is assumed uniform, and sufficiently low for the Poisson-Boltzmann equation to be linearized. The reciprocal theorem gives the flow rate generated by an applied weak electric field, expressed as an integral over the fluid volume. For a circular hole in a membrane of zero thickness, an analytical result is possible up to quadrature. For a membrane of arbitrary thickness, the full Poisson--Nernst--Planck--Stokes system of equations is solved numerically using a finite volume method. The numerical solution agrees with the standard analytical result for electro-osmotic flux through a long cylindrical pore when the membrane thickness is large compared to the hole diameter. When the membrane thickness is small, the flow rate agrees with that calculated using the reciprocal theorem.



قيم البحث

اقرأ أيضاً

Rayleigh--Taylor fluid turbulence through a bed of rigid, finite-size, spheres is investigated by means of high-resolution Direct Numerical Simulations (DNS), fully coupling the fluid and the solid phase via a state-of-the art Immersed Boundary Metho d (IBM). The porous character of the medium reveals a totally different physics for the mixing process when compared to the well-known phenomenology of classical RT mixing. For sufficiently small porosity, the growth-rate of the mixing layer is linear in time (instead of quadratical) and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose an effective continuum model to fully explain these results where porosity originated by the finite-size spheres is parameterized by a friction coefficient.
We characterize the electro-phoretic motion of charged sphere suspensions in the presence of substantial electro-osmotic flow using a recently introduced small angle super-heterodyne dynamic light scattering instrument (ISASH-LDV). Operation in integ ral mode gives access to the particle velocity distribution over the complete cell cross-section. Obtained Doppler spectra are evaluated for electro-phoretic mobility, wall electro-osmotic mobility and particle diffusion coefficient. Simultaneous measurements of differing electro-osmotic mobilities leading to asymmetric solvent flow are demonstrated in a custom made electro-kinetic cell fitting standard microscopy slides as exchangeable sidewalls. Scope and range of our approach are discussed demonstrating the possibility of an internal calibration standard and using the simultaneously measured electro-kinetic mobilities in the interpretation of microfluidic pumping experiment involving an inhomogeneous electric field and a complex solvent flow pattern.
351 - Yifei Guan , James Riley , 2019
The study focuses on the 3D electro-hydrodynamic (EHD) instability for flow between to parallel electrodes with unipolar charge injection with and without cross-flow. Lattice Boltzmann Method (LBM) with two-relaxation time (TRT) model is used to stud y flow pattern. In the absence of cross-flow, the base-state solution is hydrostatic, and the electric field is one-dimensional. With strong charge injection and high electrical Rayleigh number, the system exhibits electro-convective vortices. Disturbed by different perturbation patterns, such as rolling pattern, square pattern, and hexagon pattern, the flow patterns develop according to the most unstable modes. The growth rate and the unstable modes are examined using dynamic mode decomposition (DMD) of the transient numerical solutions. The interactions between the applied Couette and Poiseuille cross-flows and electroconvective vortices lead to the flow patterns change. When the cross-flow velocity is greater than a threshold value, the spanwise structures are suppressed; however, the cross-flow does not affect the streamwise patterns. The dynamics of the transition is analyzed by DMD. Hysteresis in the 3D to 2D transition is characterized by the non-dimensional parameter Y, a ratio of the coulombic force to viscous term in the momentum equation. The change from 3D to 2D structures enhances the convection marked by a significant increase in the electric Nusselt number.
72 - J. B. Lucks , Y. Kafri 2007
We present a simplified model of the dynamics of translocation of RNA through a nanopore which only allows the passage of unbound nucleotides. In particular, we consider the disorder averaged translocation dynamics of random, two-component, single-st randed nucleotides, by reducing the dynamics to the motion of a random walker on a one-dimensional free energy landscape of translocation. These translocation landscapes are calculated from the folds of the RNA sequences and the voltage bias applied across the nanopore. We compute these landscapes for 1500 randomly drawn two-letter sequences of length 4000. Simulations of the dynamics on these landscapes display anomalous characteristics, similar to random forcing energy landscapes, where the translocation process proceeds slower than linearly in time for sufficiently small voltage biases across the nanopore, but moves linearly in time at large voltage biases. We argue that our simplified model provides an upper bound to the more realistic translocation dynamics, and thus we expect that all RNA translocation models will exhibit anomalous regimes.
142 - K. Liu , F. Stefani , N. Weber 2019
In a cylindrical container filled with an eutectic GaInSn alloy, an electro-vortex flow (EVF) is generated by the interaction of a non-uniform current with its own magnetic field. In this paper, we investigate the EVF phenomenon numerically and exper imentally. Ultrasound Doppler Velocimetry (UDV) is applied to measure the velocity field in a cylindrical vessel. Second, we enhance an old numerical solver by taking into account the effect of Joule heating, and employ it for the numerical simulation of the EVF experiment. Special focus is laid on the role of the magnetic field, which is the combination of the current induced magnetic field and the external geomagnetic field. For getting a higher computational efficiency, the so-called parent-child mesh technique is applied in OpenFOAM when computing the electric potential, the current density and the temperature in the coupled solid-liquid conductor system. The results of the experiment are in good agreement with those of the simulation. This study may help to identify the factors that are essential for the EVF phenomenon, and for quantifying its role in liquid metal batteries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا