ترغب بنشر مسار تعليمي؟ اضغط هنا

On a diffuse interface model of tumor growth

137   0   0.0 ( 0 )
 نشر من قبل Sergio Frigeri
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a diffuse interface model of tumor growth proposed by A.~Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction $varphi$ nonlinearly coupled with a reaction-diffusion equation for $psi$, which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation function $p(varphi)$ multiplied by the differences of the chemical potentials for $varphi$ and $psi$. The system is equipped with no-flux boundary conditions which entails the conservation of the total mass, that is, the spatial average of $varphi+psi$. Here we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential $F$ and $p$ satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that $p$ satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy.



قيم البحث

اقرأ أيضاً

We consider a diffuse interface model for tumor growth recently proposed in [Y. Chen, S.M. Wise, V.B. Shenoy, J.S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Methods Biomed. Eng. , 30 (2014), 726-754]. In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity ${bf u}$ satisfies ${bf u}cdot u>0$, where $ u$ is the outer normal to the boundary of the domain. We also study a singular limit as the diffuse interface coefficient tends to zero.
We consider the problem of the long time dynamics for a diffuse interface model for tumor growth. The model describes the growth of a tumor surrounded by host tissues in the presence of a nutrient and consists in a Cahn-Hilliard-type equation for the tumor phase coupled with a reaction-diffusion equation for the nutrient concentration. We prove that, under physically motivated assumptions on parameters and data, the corresponding initial-boundary value problem generates a dissipative dynamical system that admits the global attractor in a proper phase space.
We consider a model describing the evolution of a tumor inside a host tissue in terms of the parameters $varphi_p$, $varphi_d$ (proliferating and dead cells, respectively), $u$ (cell velocity) and $n$ (nutrient concentration). The variables $varphi_p $, $varphi_d$ satisfy a Cahn-Hilliard type system with nonzero forcing term (implying that their spatial means are not conserved in time), whereas $u$ obeys a form of the Darcy law and $n$ satisfies a quasistatic diffusion equation. The main novelty of the present work stands in the fact that we are able to consider a configuration potential of singular type implying that the concentration vector $(varphi_p,varphi_d)$ is constrained to remain in the range of physically admissible values. On the other hand, in view of the presence of nonzero forcing terms, this choice gives rise to a number of mathematical difficulties, especially related to the control of the mean values of $varphi_p$ and $varphi_d$. For the resulting mathematical problem, by imposing suitable initial-boundary conditions, our main result concerns the existence of weak solutions in a proper regularity class.
Both compressible and incompressible porous medium models are used in the literature to describe the mechanical properties of living tissues. These two classes of models can be related using a stiff pressure law. In the incompressible limit, the comp ressible model generates a free boundary problem of Hele-Shaw type where incompressibility holds in the saturated phase. Here we consider the case with a nutrient. Then, a badly coupled system of equations describes the cell density number and the nutrient concentration. For that reason, the derivation of the free boundary (incompressible) limit was an open problem, in particular a difficulty is to establish the so-called complementarity relation which allows to recover the pressure using an elliptic equation. To establish the limit, we use two new ideas. The first idea, also used recently for related problems, is to extend the usual Aronson-Benilan estimates in $L^infty$ to an $L^2$ setting. The second idea is to derive a sharp uniform $L^4$ estimate on the pressure gradient, independently of space dimension.
119 - Andrea Giorgini 2019
We study a diffuse interface model describing the motion of two viscous fluids driven by the surface tension in a Hele-Shaw cell. The full system consists of the Cahn-Hilliard equation coupled with the Darcys law. We address the physically relevant c ase in which the two fluids have different viscosities (unmatched viscosities case) and the free energy density is the logarithmic Helmholtz potential. In dimension two we prove the uniqueness of weak solutions under a regularity criterion, and the existence and uniqueness of global strong solutions. In dimension three we show the existence and uniqueness of strong solutions, which are local in time for large data or global in time for appropriate small data. These results extend the analysis obtained in the matched viscosities case by Giorgini, Grasselli and Wu (Ann. Inst. H. Poincar{e} Anal. Non Lin{e}aire 35 (2018), 318-360). Furthermore, we prove the uniqueness of weak solutions in dimension two by taking the well-known polynomial approximation of the logarithmic potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا