ﻻ يوجد ملخص باللغة العربية
We consider a diffuse interface model of tumor growth proposed by A.~Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction $varphi$ nonlinearly coupled with a reaction-diffusion equation for $psi$, which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation function $p(varphi)$ multiplied by the differences of the chemical potentials for $varphi$ and $psi$. The system is equipped with no-flux boundary conditions which entails the conservation of the total mass, that is, the spatial average of $varphi+psi$. Here we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential $F$ and $p$ satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that $p$ satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy.
We consider a diffuse interface model for tumor growth recently proposed in [Y. Chen, S.M. Wise, V.B. Shenoy, J.S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Methods Biomed. Eng.
We consider the problem of the long time dynamics for a diffuse interface model for tumor growth. The model describes the growth of a tumor surrounded by host tissues in the presence of a nutrient and consists in a Cahn-Hilliard-type equation for the
We consider a model describing the evolution of a tumor inside a host tissue in terms of the parameters $varphi_p$, $varphi_d$ (proliferating and dead cells, respectively), $u$ (cell velocity) and $n$ (nutrient concentration). The variables $varphi_p
Both compressible and incompressible porous medium models are used in the literature to describe the mechanical properties of living tissues. These two classes of models can be related using a stiff pressure law. In the incompressible limit, the comp
We study a diffuse interface model describing the motion of two viscous fluids driven by the surface tension in a Hele-Shaw cell. The full system consists of the Cahn-Hilliard equation coupled with the Darcys law. We address the physically relevant c