ﻻ يوجد ملخص باللغة العربية
We report $^{75}$As- and $^{51}$V-nuclear magnetic resonance (NMR) measurements on the iron-based superconductor Sr$_2$VFeAsO$_3$ with alternating stacks structure. We find that the $^{75}$As nuclear spin-spin relaxation rate ($1/T_2$) shows a pronounced peak at $T_N$ = 165 K, below which the resonance peak shifts to a higher frequency due to the onset of an internal magnetic field. The $^{51}$V spectrum does not shift, but is broadened below $T_N$. We conclude that the Fe electrons oder antiferromagnetically below $T_N$ with a magnetic moment $m_{Fe}$ $sim$ 0.4 $mu_B$. Application of external pressure up to 2.4 GPa reduces $T_N$ in a rate of $-$40 K/GPa, and enhances the superconducting transition temperature $T_c$ in a rate of 2 K/GPa. The pressure-temperature phase diagram for Sr$_2$VFeAsO$_3$ shows that superconductivity coexists with antiferromagnetism over a wide pressure range with an unprecedented high $T_c$ up to 36.5 K.
We report $^{75}$As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb$_{2}$Cr$_{3}$As$_{3}$ with a quasi one-dimensional crystal structure. Below $Tsim$ 100 K, the spin-lattice relaxation rate (1
We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge
We have studied a quinary Fe-based superconductor Sr$_2$VFeAsO$_3$ by the measurements of x-ray diffraction, x-ray absorption, M{o}ssbauer spectrum, resistivity, magnetization and specific heat. This apparently undoped oxyarsenide is shown to be self
We report $^{133}$Cs NMR and $^{75}$As Nuclear Quadrupole Resonance (NQR) measurements on the normal metallic state above $T_c$ of a quasi-one-dimensional superconductor Cs$_2$Cr$_3$As$_3$ ($T_c < 1.6$~K). From the $^{133}$Cs NMR Knight shift $^{133}
The recent observation of superconductivity with critical temperatures up to 55 K in the FeAs based pnictide compounds marks the first discovery of a non copper-oxide based layered high-Tc superconductor (HTSC) [1-3]. It has raised the suspicion that