ﻻ يوجد ملخص باللغة العربية
We show that many results about holographic conductivities in geometries with hyperscaling violating scaling can be reproduced from simple scaling laws in the dual field theory. We show that the electro-magnetic response of probe branes in these systems require at least one additional scaling parameter Phi beyond the usual dynamical exponent z and hyperscaling violating exponent theta, as also pointed out in earlier work. We show that the scaling exponents can be chosen in such a way that the temperature dependence of DC conductivity and Hall angle in strange metals can be reproduced.
We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds wit
We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in arXiv:1604.05092 [hep-th]. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son and Starinets for shear gravit
We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitat
By employing the holographic operator mixing technique to deal with coupled perturbations in the gauge/gravity duality, I numerically compute the real and imaginary parts of the diagonal and Hall AC conductivities in a strongly coupled quantum field
We find exact, analytic solutions of the holographic AC conductivity at arbitrary frequency $omega$ and temperature $T$, in contrast to previous works where the AC conductivity was analytically obtained usually at small $omega$ and $T$. These solutio