ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin Correlations in two-partite Hexagonal Optical Lattices

194   0   0.0 ( 0 )
 نشر من قبل Marta Prada
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-component mixtures in optical lattices reveal a rich variety of different phases. We employ an exact diagonalization method to obtain the relevant correlation functions in hexagonal optical lattices to characterize those phases. We relate the occupation difference of the two species to the magnetic polarization. `Iso-magnetic correlations disclose the nature of the system, which can be of easy-axis type, bearing phase segregation, or of easy-plane type, corresponding to super-counter-fluidity. In the latter case, the correlations reveal easy-plane segregation, involving a highly-entangled state. We identify striking correlated supersolid phases appearing within the superfluid limit.



قيم البحث

اقرأ أيضاً

Ultra-cold atoms in optical lattices provide one of the most promising platforms for analog quantum simulations of complex quantum many-body systems. Large-size systems can now routinely be reached and are already used to probe a large variety of dif ferent physical situations, ranging from quantum phase transitions to artificial gauge theories. At the same time, measurement techniques are still limited and full tomography for these systems seems out of reach. Motivated by this observation, we present a method to directly detect and quantify to what extent a quantum state deviates from a local Gaussian description, based on available noise correlation measurements from in-situ and time-of-flight measurements. This is an indicator of the significance of strong correlations in ground and thermal states, as Gaussian states are precisely the ground and thermal states of non-interacting models. We connect our findings, augmented by numerical tensor network simulations, to notions of equilibration, disordered systems and the suppression of transport in Anderson insulators.
154 - M. Gluza , J. Eisert 2020
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of local coherent currents is out of reach. In this work, we show how to achieve that by measuring densities that are altered in response to quenches to non-interacting dynamics, e.g., after tilting the optical lattice. For this, we establish a data analysis method solving the closed set of equations relating tunnelling currents and atom number dynamics, allowing to reliably recover the full covariance matrix, including off-diagonal terms representing coherent currents. The signal processing builds upon semi-definite optimization, providing bona fide covariance matrices optimally matching the observed data. We demonstrate how the obtained information about non-commuting observables allows to lower bound entanglement at finite temperature which opens up the possibility to study quantum correlations in quantum simulations going beyond classical capabilities.
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show h ow the superlattice can be employed to measure the singlet-fraction employing a spin blockade effect. Our method provides a reliable way to detect and control nearest-neighbor spin correlations in many-body systems of ultracold atoms. Being able to measure these correlations is an important ingredient to study quantum magnetism in optical lattices. We furthermore employ a SWAP operation between atoms being part of different triplets, thus effectively increasing their bond-length. Such SWAP operation provides an important step towards the massively parallel creation of a multi-particle entangled state in the lattice.
Periodicity is one of the most fundamental structural characteristics of systems occurring in nature. The properties of these systems depend strongly on the symmetry of the underlying periodic structure. In solid state materials - for example - the s tatic and transport properties as well as the magnetic and electronic characteristics are crucially influenced by the crystal symmetry. In this context, hexagonal structures play an extremely important role and lead to novel physics like that of carbon nanotubes or graphene. Here we report on the first realization of ultracold atoms in a spin-dependent optical lattice with hexagonal symmetry. We show how combined effects of the lattice and interactions between atoms lead to a forced antiferromagnetic Neel order when two spin-components localize at different lattice sites. We also demonstrate that the coexistence of two components - one Mott-insulating and the other one superfluid - leads to the formation of a forced supersolid. Our observations are consistent with theoretical predictions using Gutzwiller mean-field theory.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا