ﻻ يوجد ملخص باللغة العربية
Two-component mixtures in optical lattices reveal a rich variety of different phases. We employ an exact diagonalization method to obtain the relevant correlation functions in hexagonal optical lattices to characterize those phases. We relate the occupation difference of the two species to the magnetic polarization. `Iso-magnetic correlations disclose the nature of the system, which can be of easy-axis type, bearing phase segregation, or of easy-plane type, corresponding to super-counter-fluidity. In the latter case, the correlations reveal easy-plane segregation, involving a highly-entangled state. We identify striking correlated supersolid phases appearing within the superfluid limit.
Ultra-cold atoms in optical lattices provide one of the most promising platforms for analog quantum simulations of complex quantum many-body systems. Large-size systems can now routinely be reached and are already used to probe a large variety of dif
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show h
Periodicity is one of the most fundamental structural characteristics of systems occurring in nature. The properties of these systems depend strongly on the symmetry of the underlying periodic structure. In solid state materials - for example - the s
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials,