ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial Growth of Large Area Single-Crystalline Few-Layer MoS2 with Room Temperature Mobility of 192 cm2V-1s-1

103   0   0.0 ( 0 )
 نشر من قبل Digbijoy Nath
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the vapor-solid growth of single crystalline few-layer MoS2 films on (0001)-oriented sapphire with excellent structural and electrical properties over centimeter length scale. High-resolution X-ray diffraction scans indicated that the films had good out-of-plane ordering and epitaxial registry. A carrier density of ~2 x 1011 cm-2 and a room temperature mobility of 192 cm2/Vs were extracted from space-charge limited transport regime in the films. The electron mobility was found to exhibit in-plane anisotropy with a ratio of ~ 1.8. Theoretical estimates of the temperature-dependent electron mobility including optical phonon, acoustic deformation potential and remote ionized impurity scattering were found to satisfactorily match the measured data. The synthesis approach reported here demonstrates the feasibility of device quality few-layer MoS2 films with excellent uniformity and high quality.



قيم البحث

اقرأ أيضاً

We present a photoluminescence study of freestanding and Si/SiO2 supported single- and few-layer MoS2. The single-layer exciton peak (A) is only observed in freestanding MoS2. The photoluminescence of supported single-layer MoS2 is instead originatin g from the A- (trion) peak as the MoS2 is n-type doped from the substrate. In bilayer MoS2, the van der Waals interaction with the substrate is decreasing the indirect band gap energy by up to ~ 80 meV. Furthermore, the photoluminescence spectra of suspended MoS2 can be influenced by interference effects.
Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy . Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. Whil e significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.
Large-area bilayer graphene (BG) is grown epitaxially on Ru(0001) surface and characterized by low temperature scanning tunneling microscopy. The lattice of the bottom layer of BG is stretched by 1.2%, while strain is absent from the top layer. The l attice mismatch between the two layers leads to the formation of a moire pattern with a periodicity of ~21.5 nm and a mixture of AA- and AB-stacking. The root3 x root3 superstructure around atomic defects is attributed to the inter-valley scattering of the delocalized pi-electrons, demonstrating that the as-grown BG behaves like intrinsic free-standing graphene.
The nucleation and growth of single-layer molybdenum disulfide single domain islands is investigated by in situ low-energy electron microscopy. We study the growth of micron-sized flakes and the correlated flattening process of the gold surface for t hree different elevated temperatures. Furthermore, the influence of surface step edges on the molybdenum disulfide growth process is revealed. We show that both island and underlying terrace grow simultaneously by pushing the surface step in the expansion process. Our findings point to an optimized growth procedure allowing for step-free single-domain single-layer islands of several micrometers in size, which is likely transferable to other transition metal dichalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا