ﻻ يوجد ملخص باللغة العربية
The maximal subgroup of unipotent upper-triangular matrices of the finite general linear groups are a fundamental family of $p$-groups. Their representation theory is well-known to be wild, but there is a standard supercharacter theory, replacing irreducible representations by super-representations, that gives us some control over its representation theory. While this theory has a beautiful underlying combinatorics built on set partitions, the structure constants of restricted super-representations remain mysterious. This paper proposes a new approach to solving the restriction problem by constructing natural intermediate modules that help factor the computation of the structure constants. We illustrate the technique by solving the problem completely in the case of rainbow supercharacters (and some generalizations). Along the way we introduce a new $q$-analogue of the binomial coefficients that depend on an underlying poset.
No two rainbows are the same. Neither are two packs of Skittles. Enjoy an odd mix!. Using an interpretation via spatial random walks, we quantify the probability that two randomly selected packs of Skittles candy are identical and determine the expec
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to
For $G={rm GL}(n,q)$, the proportion $P_{n,q}$ of pairs $(chi,g)$ in ${rm Irr}(G)times G$ with $chi(g) eq 0$ satisfies $P_{n,q}to 0$ as $ntoinfty$.
Let $W$ denote a simply-laced Coxeter group with $n$ generators. We construct an $n$-dimensional representation $phi$ of $W$ over the finite field $F_2$ of two elements. The action of $phi(W)$ on $F_2^n$ by left multiplication is corresponding to a c
We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated to each classical root system. In finite type A_{n-1}, we rederive the description of the generalized exponents in terms of crystal