ﻻ يوجد ملخص باللغة العربية
The Bose-ghost propagator has been proposed as a carrier of the confining force in Yang-Mills theories in minimal Landau gauge. We present the first numerical evaluation of this propagator, using lattice simulations for the SU(2) gauge group in the scaling region. Our data are well described by a simple fitting function, which is compatible with an infrared-enhanced Bose-ghost propagator. This function can also be related to a massive gluon propagator in combination with an infrared-free (Faddeev-Popov) ghost propagator. Since the Bose-ghost propagator can be written as the vacuum expectation value of a BRST-exact quantity and should therefore vanish in a BRST-invariant theory, our results provide the first numerical manifestation of BRST-symmetry breaking due to restriction of gauge-configuration space to the Gribov region.
By evaluating the so-called Bose-ghost propagator, we present the first numerical evidence of BRST-symmetry breaking for Yang-Mills theory in minimal Landau gauge, i.e. due to the restriction of the functional integration to the first Gribov region i
We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume
The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq
We present improved upper and lower bounds for the momentum-space ghost propagator of Yang-Mills theories in terms of the two smallest nonzero eigenvalues (and their corresponding eigenvectors) of the Faddeev-Popov matrix. These results are verified