ﻻ يوجد ملخص باللغة العربية
Understanding the biasing between the clustering properties of halos and the underlying dark matter distribution is important for extracting cosmological information from ongoing and upcoming galaxy surveys. While on sufficiently larges scales the halo overdensity is a local function of the mass density fluctuations, on smaller scales the gravitational evolution generates non-local terms in the halo density field. We characterize the magnitude of these contributions at third-order in perturbation theory by identifying the coefficients of the non-local invariant operators, and extend our calculation to include non-local (Lagrangian) terms induced by a peak constraint. We apply our results to describe the scale-dependence of halo bias in cosmologies with massive neutrinos. The inclusion of gravity-induced non-local terms and, especially, a Lagrangian $k^2$-contribution is essential to reproduce the numerical data accurately. We use the peak-background split to derive the numerical values of the various bias coefficients from the excursion set peak mass function. For neutrino masses in the range $0leq sum_i m_{ u_i} leq 0.6$ eV, we are able to fit the data with a precision of a few percents up to $k=0.3, h {rm ,Mpc^{-1}}$ without any free parameter.
We present a comprehensive derivation of linear perturbation equations for different matter species, including photons, baryons, cold dark matter, scalar fields, massless and massive neutrinos, in the presence of a generic conformal coupling. Startin
We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the
Local non-Gaussianity, parametrized by $f_{rm NL}$, introduces a scale-dependent bias that is strongest at large scales, precisely where General Relativistic (GR) effects also become significant. With future data, it should be possible to constrain $
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non
The Hubble tension can be significantly eased if there is an early component of dark energy that becomes active around the time of matter-radiation equality. Early dark energy models suffer from a coincidence problem -- the physics of matter-radiatio