ترغب بنشر مسار تعليمي؟ اضغط هنا

Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

348   0   0.0 ( 0 )
 نشر من قبل Alessandra Beifiori
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the redshift evolution of the dynamical properties of ~180,000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1<z< 0.6. The typical stellar mass of this sample is Mstar~2x10^{11} Msun. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the SDSS imaging we calibrate the SDSS size measurements with HST/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass, are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2sigma significance. By combining our sample with high-redshift literature data we find that this evolution of the dynamical to stellar mass ratio continues beyond z~0.7 up to z>2 as Mdyn/Mstar~ (1+z)^{-0.30+/- 0.12} further strengthening the evidence for an increase of Mdyn/Mstar with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.



قيم البحث

اقرأ أيضاً

We report on the diversity in quasar spectra from the Baryon Oscillation Spectroscopic Survey. After filtering the spectra to mitigate selection effects and Malmquist bias associated with a nearly flux-limited sample, we create high signal-to-noise r atio composite spectra from 58,656 quasars (2.1 le z le 3.5), binned by luminosity, spectral index, and redshift. With these composite spectra, we confirm the traditional Baldwin effect (BE, i.e., the anticorrelation of C IV equivalent width (EW) and luminosity) that follows the relation W_lambda propto L^{beta_w} with slope beta_w = -0.35 pm 0.004, -0.35 pm 0.005, and -0.41 pm 0.005 for z = 2.25, 2.46, and 2.84, respectively. In addition to the redshift evolution in the slope of the BE, we find redshift evolution in average quasar spectral features at fixed luminosity. The spectroscopic signature of the redshift evolution is correlated at 98% with the signature of varying luminosity, indicating that they arise from the same physical mechanism. At a fixed luminosity, the average C IV FWHM decreases with increasing redshift and is anti-correlated with C IV EW. The spectroscopic signature associated with C IV FWHM suggests that the trends in luminosity and redshift are likely caused by a superposition of effects that are related to black hole mass and Eddington ratio. The redshift evolution is the consequence of a changing balance between these two quantities as quasars evolve toward a population with lower typical accretion rates at a given black hole mass.
We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quas ar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($lesssim$2) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.
138 - D. Thomas 2012
We perform a spectroscopic analysis of 492,450 galaxy spectra from the first two years of observations of the Sloan Digital Sky Survey-III/Baryonic Oscillation Spectroscopic Survey (BOSS) collaboration. This data set has been released in the ninth SD SS data release, the first public data release of BOSS spectra. We show that the typical signal-to-noise ratio of BOSS spectra is sufficient to measure stellar velocity dispersion and emission line fluxes for individual objects. The typical velocity dispersion of a BOSS galaxy is 240 km/s, with an accuracy of better than 30 per cent for 93 per cent of BOSS galaxies. The distribution in velocity dispersion is redshift independent between redshifts 0.15 and 0.7, which reflects the survey design targeting massive galaxies with an approximately uniform mass distribution in this redshift interval. The majority of BOSS galaxies lack detectable emission lines. We analyse the emission line properties and present diagnostic diagrams using the emission lines [OII], Hbeta, [OIII], Halpha, and [NII] (detected in about 4 per cent of the galaxies). We show that the emission line properties are strongly redshift dependent and that there is a clear correlation between observed frame colours and emission line properties. Within in the low-z sample around 0.15<z<0.3, half of the emission-line galaxies have LINER-like emission line ratios, followed by Seyfert-AGN dominated spectra, and only a small fraction of a few per cent are purely star forming galaxies. AGN and LINER-like objects, instead, are less prevalent in the high-z sample around 0.4<z<0.7, where more than half of the emission line objects are star forming. This is a pure selection effect caused by the non-detection of weak Hbeta emission lines in the BOSS spectra. Finally, we show that star forming, AGN and emission line free galaxies are well separated in the g-r vs r-i target selection diagram.
We measure the color and stellar mass dependence of clustering in spectroscopic galaxies at $0.6 < z < 0.65$ using data from the Baryon Oscillation Spectroscopic Survey component of the Sloan Digital Sky Survey. We greatly increase the statistical pr ecision of our clustering measurements by using the cross-correlation of 66,657 spectroscopic galaxies to a sample of 6.6 million fainter photometric galaxies. The clustering amplitude $w(R)$ is measured as the ratio of the mean excess number of photometric galaxies found within a specified radius annulus around a spectroscopic galaxy to that from a random photometric galaxy distribution. We recover many of the familiar trends at high signal-to-noise ratio. We find the ratio of the clustering amplitudes of red and blue massive galaxies to be $w_text{red}/w_text{blue} = 1.92 pm 0.11$ in our smallest annulus of 75-125 kpc. At our largest radii (2-4 Mpc), we find $w_text{red}/w_text{blue} = 1.24 pm 0.05$. Red galaxies therefore have denser environments than their blue counterparts at $z sim 0.625$, and this effect increases with decreasing radius. Irrespective of color, we find that $w(R)$ does not obey a simple power-law relation with radius, showing a dip around 1 Mpc. Holding stellar mass fixed, we find a clear differentiation between clustering in red and blue galaxies, showing that clustering is not solely determined by stellar mass. Holding color fixed, we find that clustering increases with stellar mass, especially for red galaxies at small scales (more than a factor of 2 effect over 0.75 dex in stellar mass).
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا