ﻻ يوجد ملخص باللغة العربية
We show the generation of two-dimensional quantum turbulence through simulations of a giant vortex decay in a trapped Bose-Einstein condensate. While evaluating the incompressible kinetic energy spectra of the quantum fluid described by the Gross-Pitaevskii equation, a bilinear form in a log-log plot is verified. A characteristic scaling behavior for small momenta shows resemblance to the Kolmogorov $k^{-5/3}$ law, while for large momenta it reassures the universal behavior of the core-size $k^{-3}$ power-law. This indicates a mechanism of energy transportation consistent with an inverse cascade. The feasibility of the described physical system with the currently available experimental techniques to create giant vortices opens up a new route to explore quantum turbulence.
Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluids confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compres
In a recent experiment, Kwon et. al (arXiv:1403.4658 [cond-mat.quant-gas]) generated a disordered state of quantum vortices by translating an oblate Bose-Einstein condensate past a laser-induced obstacle and studying the subsequent decay of vortex nu
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we real
A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that u
We present a systematic derivation of the effective action for interacting vortices in a non-relativistic two-dimensional superfluid described by the Gross-Pitaevskii equation by integrating out longitudinal fluctuations of the order parameter. There