ﻻ يوجد ملخص باللغة العربية
In order to characterize the higher order moments of the particle multiplicity, we implement the linear-sigma model with Polyakov-loop correction. We first studied the critical phenomena and estimated some thermodynamic quantities. Then, we compared all these results with the first--principle lattice QCD calculations. Then, the extensive study of non-normalized four moments is followed by investigating their thermal and density dependence. We repeat this for moments normalized to temperature and chemical potential. The fluctuations of the second order moment is used to estimate the chiral phase--transition. Then, we implement all these in mapping out the chiral phase transition, which shall be compared with the freeze-out parameters estimated from the lattice QCD simulations and the thermal models are compared with the chiral phase--diagram.
In characterizing the chiral phase-structure of pseudoscalars ($J^{pc}=0^{-+}$), scalars ($J^{pc}=0^{++}$), vectors ($J^{pc}=1^{--}$) and axial-vectors ($J^{pc}=1^{++}$) meson states and their dependence on temperature, chemical potential, and magnet
We compute the critical temperature for the chiral transition in the background of a magnetic field in the linear sigma model, including the quark contribution and the thermo-magnetic effects induced on the coupling constants at one loop level. We sh
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira
The nonanalyticity and the sign problem in the Z3-symmetric heavy quark model at low temperature are studied phenomenologically. For the free heavy quarks, the nonanalyticity is analyzed in the relation to the zeros of the grand canonical partition f
We have computed the chiral susceptibility in quark-gluon plasma in presence of finite chemical potential and weak magnetic field within hard thermal loop approximation. First we construct the massive effective quark propagator in a thermomagnetic me