ﻻ يوجد ملخص باللغة العربية
We analyze Dirac spectra of two-dimensional QCD like theories both in the continuum and on the lattice and classify them according to random matrix theories sharing the same global symmetries. The classification is different from QCD in four dimensions because the anti-unitary symmetries do not commute with $gamma_5$. Therefore in a chiral basis, the number of degrees of freedom per matrix element are not given by the Dyson index. Our predictions are confirmed by Dirac spectra from quenched lattice simulations for QCD with two or three colors with quarks in the fundamental representation as well as in the adjoint representation. The universality class of the spectra depends on the parity of the number of lattice points in each direction. Our results show an agreement with random matrix theory that is qualitatively similar to the agreement found for QCD in four dimensions. We discuss the implications for the Mermin-Wagner-Coleman theorem and put our results in the context of two-dimensional disordered systems.
The microscopic spectral density of the QCD Dirac operator at nonzero baryon chemical potential for an arbitrary number of quark flavors was derived recently from a random matrix model with the global symmetries of QCD. In this paper we show that the
We evaluate the induced value of Newtons constant which would arise in QCD. The ingredients are modern lattice results, perturbation theory and the operator product expansion. The resulting shift in the Planck mass is positive. A scaled-up version of
The axial $U(1)$ symmetry in the high-temperature phase is investigated with $N_f = 2$ lattice QCD simulations. The gauge ensembles are generated with Mobius domain-wall fermions, and the overlap/domain-wall reweighting is applied. We find that the $
We report on the spectrum of the SU(3) gauge theory with twelve flavours in the fundamental representation of the gauge group. We isolate distinctive features of the hadronic phase - the one proper of QCD at zero temperature - and the so called confo
Using lattice QCD simulations with $N_f = 2$ dynamical fermions, we study the axial $U(1)$ symmetry, topological charge, and Dirac eigenvalue spectra in the high-temperature phase in which the chiral symmetry is restored. Our gauge ensembles are gene