ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-probe spectroscopic fingerprints of defects in graphene

108   0   0.0 ( 0 )
 نشر من قبل Mikkel Settnes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in experimental techniques emphasize the usefulness of multiple scanning probe techniques when analyzing nanoscale samples. Here, we analyze theoretically dual-probe setups with probe separations in the nanometer range, i.e., in a regime where quantum coherence effects can be observed at low temperatures. In a dual-probe setup the electrons are injected at one probe and collected at the other. The measured conductance reflects the local transport properties on the nanoscale, thereby yielding information complementary to that obtained with a standard one-probe setup (the local density-of-states). In this work we develop a real space Greens function method to compute the conductance. This requires an extension of the standard calculation schemes, which typically address a finite sample between the probes. In contrast, the developed method makes no assumption on the sample size (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet display Fano-type resonances with a strong dependence on the edge geometry of the perforation.



قيم البحث

اقرأ أيضاً

Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunnelling microscopy using a Greens Function formalism, and apply it to graphene. Sa mpling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. The spectral signatures of the Fourier transform of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of non-ideal graphene samples on dual-probe measurements.
Bottom-up approaches allow the production of ultra-narrow and atomically precise graphene nanoribbons (GNRs), with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab-initio simulations, we show that GNR width, edge geometry and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm-1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs, and differentiates them from other sp2 carbon nanostructures.
In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference eff ects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.
Graphene is a model system for the study of electrons confined to a strictly two-dimensional layer1 and a large number of electronic phenomena have been demonstrated in graphene, from the fractional2, 3 quantum Hall effect to superconductivity4. Howe ver, the coupling of conduction electrons to local magnetic moments5, 6, a central problem of condensed matter physics, has not been realized in graphene, and, given carbons lack of d or f electrons, magnetism in graphene would seem unlikely. Nonetheless, magnetism in graphitic carbon in the absence of transition-metal elements has been reported7-10, with explanations ranging from lattice defects11 to edge structures12, 13 to negative curvature regions of the graphene sheet14. Recent experiments suggest that correlated defects in highly-ordered pyrolytic graphite (HOPG) induced by proton irradiation9 or native to grain boundaries7, can give rise to ferromagnetism. Here we show that point defects (vacancies) in graphene15 are local moments which interact strongly with the conduction electrons through the Kondo effect6, 16-18 providing strong evidence that defects in graphene are indeed magnetic. The Kondo temperature TK is tunable with carrier density from 30-90 K; the high TK is a direct consequence of strong coupling of defects to conduction electrons in a Dirac material18. The results indicate that defect engineering in graphene could be used to generate and control carrier-mediated magnetism, and realize all-carbon spintronic devices. Furthermore, graphene should be an ideal system in which to probe Kondo physics in a widely tunable electron system.
Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrows electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene monolayer grown on a Pt(111) surface and investigated its impact in the electronic, structural and magnetic properties of the graphene layer. Our low temperature scanning tunneling microscopy studies, complemented by density functional theory, show the existence of a broad electronic resonance above the Fermi energy associated with the vacancies. Vacancy sites become reactive leading to an increase of the coupling between the graphene layer and the metal substrate at these points; this gives rise to a rapid decay of the localized state and the quenching of the magnetic moment associated with carbon vacancies in free-standing graphene layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا