ﻻ يوجد ملخص باللغة العربية
The discussion of renormalization group flows in four-dimensional conformal field theories has recently focused on the a-anomaly. It has recently been shown that there is a monotonic decreasing function which interpolates between the ultraviolet and infrared fixed points such that Delta a = a_UV - a_IR > 0. The analysis has been extended to weakly relevant and marginal deformations, though there are few explicit examples involving interacting theories. In this paper we examine the a-theorem in the context of the gauged vector model which couples the usual vector model to the Banks-Zaks model. We consider the model to leading order in the 1/N expansion, all orders in the coupling constant lambda, and to second order in g^2. The model has both an IR and UV fixed point, and satisfies Delta a > 0.
A calculation of the renormalization group improved effective potential for the gauged U(N) vector model, coupled to $N_f$ fermions in the fundamental representation, computed to leading order in 1/N, all orders in the scalar self-coupling $lambda$,
In this paper we introduce a new method for generating gauged sigma models from four-dimensional Chern-Simons theory and give a unified action for a class of these models. We begin with a review of recent work by several authors on the classical gene
The formulation of the non-linear sigma model in terms of flat connection allows the construction of a perturbative solution of a local functional equation encoding the underlying gauge symmetry. In this paper we discuss some properties of the soluti
We compute the supersymmetric partition function of $mathcal{N}{=}1$ supersymmetric gauge theories with an $R$-symmetry on $mathcal{M}_4 cong mathcal{M}_{g,p}times S^1$, a principal elliptic fiber bundle of degree $p$ over a genus-$g$ Riemann surface
In cosmological perturbation theory it is convenient to use the scalar, vector, tensor (SVT) basis as defined according to how these components transform under 3-dimensional rotations. In attempting to solve the fluctuation equations that are automat