ترغب بنشر مسار تعليمي؟ اضغط هنا

A calibration of the stellar mass fundamental plane at z ~ 0.5 using the micro-lensing induced flux ratio anomalies of macro-lensed quasars

156   0   0.0 ( 0 )
 نشر من قبل Paul L. Schechter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the stellar mass surface densities of early type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single epoch X-ray snapshots of ten quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter IMF with a low mass cutoff of 0.1 solar mass and treat the zeropoint of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77 < F < 2.10

قيم البحث

اقرأ أيضاً

We measure the stellar mass surface densities of early type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs and red dwarfs too faint to produce photometric or spectr oscopic signatures. Our method measures the graininess of the gravitational potential, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the calibration factor F by which Salpeter stellar masses (with a low mass cutoff of 0.1 solar masses) must be multiplied is 1.23, with a one sigma confidence range of 0.77 < F < 2.10.
Although micro-lensing of macro-lensed quasars and supernovae provides unique opportunities for several kinds of investigations, it can add unwanted and sometimes substantial noise. While micro-lensing flux anomalies may be safely ignored for some ob servations, they severely limit others. Worst-case estimates can inform the decision whether or not to undertake an extensive examination of micro-lensing scenarios. Here, we report worst-case micro-lensing uncertainties for point sources lensed by singular isothermal potentials, parameterized by a convergence equal to the shear and by the stellar fraction. The results can be straightforwardly applied to non-isothermal potentials utilizing the mass sheet degeneracy. We use micro-lensing maps to compute fluctuations in image micro-magnifications and estimate the stellar fraction at which the fluctuations are greatest for a given convergence. We find that the worst-case fluctuations happen at a stellar fraction $kappa_star=frac{1}{|mu_{macro}|}$. For macro-minima, fluctuations in both magnification and demagnification appear to be bounded ($1.5>Delta m>-1.3$, where $Delta m$ is magnitude relative to the average macro-magnification). Magnifications for macro-saddles are bounded as well ($Delta m > -1.7$). In contrast, demagnifications for macro-saddles appear to have unbounded fluctuations as $1/mu_{macro}rightarrow0$ and $kappa_starrightarrow0$.
We examine the Fundamental Plane (FP) and mass-to-light ratio ($M/L$) scaling relations using the largest sample of massive quiescent galaxies at $1.5<z<2.5$ to date. The FP ($r_{e}, sigma_{e}, I_{e}$) is established using $19$ $UVJ$ quiescent galaxi es from COSMOS with $Hubble$ $Space$ $Telescope$ $(HST)$ $H_{F160W}$ rest-frame optical sizes and X-shooter absorption line measured stellar velocity dispersions. For a very massive, ${rm{log}}(M_{ast}/M_{odot})>11.26$, subset of 8 quiescent galaxies at $z>2$, from Stockmann et al. (2020), we show that they cannot passively evolve to the local Coma cluster relation alone and must undergo significant structural evolution to mimic the sizes of local massive galaxies. The evolution of the FP and $M/L$ scaling relations, from $z=2$ to present-day, for this subset are consistent with passive aging of the stellar population and minor merger structural evolution into the most massive galaxies in the Coma cluster and other massive elliptical galaxies from the MASSIVE Survey. Modeling the luminosity evolution from minor merger added stellar populations favors a history of merging with dry quiescent galaxies.
We present spectroscopic observations obtained at the {it Large Binocular Telescope} in the field of the cluster XLSSJ0223-0436 at $z=1.22$. We confirm 12 spheroids cluster members and determine stellar velocity dispersion for 7 of them. We combine t hese data with those in the literature for clusters RXJ0848+4453 at $z=1.27$ (8 galaxies) and XMMJ2235-2557 at $z=1.39$ (7 galaxies) to determine the Fundamental Plane of cluster spheroids. We find that the FP at $zsim1.3$ is offset and { rotated ($sim3sigma$)} with respect to the local FP. The offset corresponds to a mean evolution $Delta$rm{log}(M$_{dyn}$/L$_B$)=(-0.5$pm$0.1)$z$. High-redshift galaxies follow a steeper mass-dependent M$_{dyn}$/L$_B$-M$_{dyn}$ relation than local ones. Assuming $Delta$ log$(M_{dyn}/L_B)$=$Delta$ log$(M^*/L_B)$, higher-mass galaxies (log(M$_{dyn}$/M$_odot$)$geq$11.5) have a higher-formation redshift ($z_fgeq$6.5) than lower-mass ones ($z_fleq$2 for log(M$_{dyn}$/M$_odot$$leq$10)), with a median $z_fsimeq2.5$ for the whole sample. Also, galaxies with higher stellar mass density host stellar populations formed earlier than those in lower density galaxies. At fixed IMF, M$_{dyn}$/M$^*$ varies systematically with mass and mass density. It follows that the evolution of the stellar populations (M$^*/L_B$) accounts for the observed evolution of M$_{dyn}/L_B$ for M$_{dyn}$$>10^{11}$ M$_odot$ galaxies, while accounts for $sim$85% of the evolution at M$_{dyn}$$<10^{11}$ M$_odot$. We find no evidence in favour of structural evolution of individual galaxies, while we find evidences that spheroids later added to the population account for the observed discrepancy at masses $<10^{11}$ M$_odot$. [Abridged]
Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius $R_e$, enclosed surface brightness $I_e$ and velocity dispersion $sigma_e$. Since $I_ e$ and $sigma_e$ are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which $I_e$ and $sigma_e$ can be used to estimate sizes $R_e$. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in $R_e$ is $sim 16%$, of which only $sim 9%$ is intrinsic. Removing galaxies with $M_*<10^{11}M_odot$ further reduces the observed scatter to $sim 13%$ ($sim 4%$ intrinsic). The observed scatter increases to the $sim 25%$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only $5%$ orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that $I_e$ and $sigma_e$ are nearly independent, whereas the $R_e-I_e$ and $R_e-sigma_e$ correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted. If we multiply $I_e$ by the global stellar mass-to-light ratio $M_*/L$ and we account for non-homology across the population by using Sersic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for $M_*/L$ gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا