ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cosmological Slavnov-Taylor Identity

262   0   0.0 ( 0 )
 نشر من قبل Hael Collins
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Greens functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state.



قيم البحث

اقرأ أيضاً

111 - D. Binosi , A. Quadri 2015
The cosmological Slavnov-Taylor (ST) identity of the Einstein-Hilbert action coupled to a single inflaton field is obtained from the Becchi-Rouet-Stora-Tyutin (BRST) symmetry associated with diffeomorphism invariance in the Arnowitt-Deser-Misner (ADM ) formalism. The consistency conditions between the correlators of the scalar and tensor modes in the squeezed limit are then derived from the ST identity, together with the softly broken conformal symmetry. Maldacenas original relations connecting the 2- and 3-point correlators at horizon crossing are recovered, as well as the next-to-leading corrections, controlled by the special conformal transformations.
374 - A. Quadri 2014
We clarify the derivation of high-energy QCD evolution equations from the fundamental gauge symmetry of QCD. The gauge-fixed classical action of the Color Glass Condensate (CGC) is shown to be invariant under a suitable BRST symmetry, that holds afte r the separation of the gluon modes into their fast classical (background) part, the soft component and the semifast one, over which the one-step quantum evolution is carried out. The resulting Slavnov-Taylor (ST) identity holds to all orders in perturbation theory and strongly constrains the CGC effective field theory (EFT) arising from the integration of the soft modes. We show that the ST identity guarantees gauge-invariance of the EFT. It also allows to control the dependence on the gauge-fixing choice for the semifast modes (usually the lightcone gauge in explicit computations). The formal properties of the evolution equations valid in different regimes (BKFL, JIMWLK, ...) can be all derived in a unified setting within this algebraic approach.
We show that a powerful Slavnov-Taylor (ST) identity exists for the Effective Field Theory (EFT) of the Color Glass Condensate (CGC), allowing to control by purely algebraic means the full dependence on the background fields of the fast gluon modes, as well as the correlators of the quantum fluctuations of the classical gluon source. We use this formalism to study the change of the background fast modes (in the Coulomb gauge), induced by the quantum corrections of the semi-fast gluons. We establish the evolution equation for the EFT of the CGC, which points towards an algebraic derivation of the JIMWLK equation. Being based on symmetry-arguments only, the approach can be used to extend the analysis to arbitrary gauges and to higher orders in the perturbation expansion of the EFT.
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in QCD. To this end, we consider transverse Slavnov-Taylor identities that constrain the transverse quark-gluon vertex and derive its eight associated scalar form factors. The complete vertex can be expressed in terms of the quarks mass and wave-renormalization functions, the ghost-dressing function, the quark-ghost scattering amplitude and a set of eight form factors. The latter parametrize the hitherto unknown nonlocal tensor structure in the transverse Slavnov-Taylor identity which arises from the Fourier transform of a four-point function involving a Wilson line in coordinate space. We determine the functional form of these eight form factors with the constraints provided by the Bashir-Bermudez vertex and study the effects of this novel vertex on the quark in the Dyson-Schwinger equation using lattice QCD input for the gluon and ghost propagators. We observe significant dynamical chiral symmetry breaking and a mass gap that leads to a constituent mass of the order of 500 MeV for the light quarks. The flavor dependence of the mass and wave-renormalization functions as well as their analytic behavior on the complex momentum plane is studied and as an application we calculate the quark condensate and the pions weak decay constant in the chiral limit. Both are in very good agreement with their reference values.
76 - Andrea Quadri 2019
We study the solution to the Slavnov-Taylor (ST) identities in spontaneously broken effective gauge theories for a non-Abelian gauge group. The procedure to extract the $beta$-functions of the theory in the presence of (generalized) non-polynomial field redefinitions is elucidated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا