ﻻ يوجد ملخص باللغة العربية
We report extremely strong optical activity and circular dichroism exhibited by subwavelength arrays of four-start-screw holes fabricated with one-pass focused ion beam milling of freely suspended silver films. Having the fourth order rotational symmetry, the structures exhibit the polarization rotation up to 90 degrees and peaks of full circular dichroism and operate as circular polarizers within certain ranges of wavelengths in the visible. We discuss the observations on the basis of general principles (symmetry, reciprocity and reversibility) and conclude that the extreme optical chirality is determined by the chiral localized plasmonic resonances.
In the close vicinity of a chiral nanostructure, the circular dichroism of a biomolecule could be greatly enhanced, due to the interaction with the local superchiral fields. Modest enhancement of optical activity using a planar metamaterial, with som
We propose a Babinet-invertible chiral metasurface for achieving dynamically reversible and strong circular dichroism (CD). The proposed metasurface is composed of VO$_2$-metal hybrid structure, and when VO$_2$ transits between the dielectric state a
Strong enhancement of molecular circular dichroism has the potential to enable efficient asymmetric photolysis, a method of chiral separation that has conventionally been impeded by insufficient yield and low enantiomeric excess. Here, we study exper
Circular dichroism (CD), induced by chirality, is an important tool for manipulating light or for characterizing morphology of molecules, proteins, crystals and nano-structures. CD is manifested over a wide size-range, from molecules to crystals or l
Chirality is ubiquitous in nature and fundamental in science, from particle physics to metamaterials.The most established technique of chiral discrimination - photoabsorption circular dichroism - relies on the magnetic properties of a chiral medium a