ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps

160   0   0.0 ( 0 )
 نشر من قبل Jinkyu Yang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of frequency band gaps in single column woodpile phononic crystals composed of orthogonally stacked slender cylinders. We focus on investigating the effect of the cylinders local vibrations on the dispersion of elastic waves along the stacking direction of the woodpile phononic crystals. We experimentally verify that their frequency band structures depend significantly on the bending resonant behavior of unit cells. We propose a simple theoretical model based on a discrete element method to associate the behavior of locally resonant cylindrical rods with the band gap formation mechanism in woodpile phononic crystals. The findings in this work imply that we can achieve versatile control of frequency band structures in phononic crystals by using woodpile architectures. The woodpile phononic crystals can form a new type of vibration filtering devices that offer an enhanced degree of freedom in manipulating stress wave propagation.



قيم البحث

اقرأ أيضاً

Bandgap engineering by substituting C with B and N atoms in graphene has been shown to be a promising way to improve semiconducting properties of graphene. Such hybridized monolayers consisting of hexagonal BN phases in graphene (h-BNC) have been rec ently synthesized and char- acterized. In this paper, we present an ab initio density functional theory (DFT)-based study of h-BN domain size effect on band gap of mono-layer h-BNC heterostructures. The atomic structures, electronic band structures, density of states and electron localization functions of five h-BNC config- urations are examined as h-BN concentration ranged from 0 to 100%. We report that the band gap energy of h-BNC can be continuously and quadratically tuned as a function of h-BN concentration.
We study the electronic properties of h-BN/graphene/h-BN ABC-stacked trilayer systems using tight binding and DFT methods. We comment on the recent work of Ramasubramaniam et al. (arxiv:1011.2489) whose results seem to be in disagreement with our rec ent calculations. Detailed analysis reaffirms our previous conclusions.
The resonance modes and the related effects to the transmission of elastic waves in a two dimensional phononic crystal formed by periodic arrangements of a two blocks unit cell in one direction are studied. The unit cell consists of two asymmetric el liptic cylinders coated with silicon rubber and embedded in a rigid matrix. The modes are obtained by the semi-analytic method in the least square collocation scheme and confirmed by the finite element method simulations. Two resonance modes, corresponding to the vibration of the cylinder along the long and short axes, give rise to resonance reflections of elastic waves. One mode in between the two modes, related to the opposite vibration of the two cylinders in the unit cell in the direction along the layer, results in the total transmission of elastic waves due to zero effective mass density at the frequency. The resonance frequency of this new mode changes continuously with the orientation angle of the elliptic resonator.
Ultra long linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes, and they show a promising new route to one--atom--wide semiconductors with a direct band gap. Theoretical studies pre dicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine for the first time the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chains bond length alternation.
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا