ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement entropy of $alpha$-vacua in de Sitter space

140   0   0.0 ( 0 )
 نشر من قبل Sugumi Kanno
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.



قيم البحث

اقرأ أيضاً

In this work, we study the phenomena of quantum entanglement by computing de Sitter entanglement entropy from von Neumann measure. For this purpose we consider a bipartite quantum field theoretic setup in presence of axion originating from ${bf Type~ II~B}$ string theory. We consider the initial vacuum to be CPT invariant non-adiabatic $alpha$ vacua state under ${bf SO(1,4)}$ ismometry, which is characterized by a real one-parameter family. To implement this technique we use a ${bf S^2}$ which divide the de Sitter into two exterior and interior sub-regions. First, we derive the wave function of axion in an open chart for $alpha$ vacua by applying Bogoliubov transformation on the solution for Bunch-Davies vacuum state. Further, we quantify the density matrix by tracing over the contribution from the exterior region. Using this result we derive entanglement entropy, R$acute{e}$nyi entropy and explain the long-range quantum effects in primordial cosmological correlations. We also provide a comparison between the results obtained from Bunch-Davies vacuum and the generalized $alpha$ vacua, which implies that the amount of quantum entanglement and the long-range effects are larger for non zero value of the parameter $alpha$. Most significantly, our derived results for $alpha$ vacua provides the necessary condition for generating non zero entanglement entropy in primordial cosmology.
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space with a single volume modulus, but generalizations to single-field no-scale models with de Sitter vacua are also known. In this paper we generalize these de Sitter constructions to two- and multi-field models of the types occurring in string compactifications with more than one relevant modulus. We discuss the conditions for stability of the de Sitter solutions and holomorphy of the superpotential, and give examples whose superpotential contains only integer powers of the chiral fields.
115 - Nikolaos Tetradis 2021
We review the results of refs. [1,2], in which the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, is computed using holography. This is achieved through an appropriate slicing of anti-de Sitter space and the impleme ntation of a UV cutoff. When the entangling surface coincides with the horizon of the boundary metric, the entanglement entropy can be identified with the standard gravitational entropy of the space. For this to hold, the effective Newtons constant must be defined appropriately by absorbing the UV cutoff. Conversely, the UV cutoff can be expressed in terms of the effective Planck mass and the number of degrees of freedom of the dual theory. For de Sitter space, the entropy is equal to the Wald entropy for an effective action that includes the higher-curvature terms associated with the conformal anomaly. The entanglement entropy takes the expected form of the de Sitter entropy, including logarithmic corrections.
115 - Benjamin Shlaer 2009
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say $R$ and $L$ separated by another region, $C$. We are intereste d in the field theory in $Rcup L$ to understand the long range quantum correlations between $R$ and $L$. There are local modes of the Dirac field having supports individually either in $R$ or $L$, as well as global modes found via analytically continuing the $R$ modes to $L$ and vice versa. However, we show that unlike the case of a scalar field, the analytic continuation does not preserve the orthogonality of the resulting global modes. Accordingly, we need to orthonormalise them following the Gram-Schmidt prescription, prior to the field quantisation in order to preserve the canonical anti-commutation relations. We observe that this prescription naturally incorporates a spacetime independent continuous parameter, $theta_{rm RL}$, into the picture. Thus interestingly, we obtain a naturally emerging one-parameter family of $alpha$-like de Sitter vacua. The values of $theta_{rm RL}$ yielding the usual thermal spectra of massless created particles are pointed out. Next, using these vacua, we investigate both entanglement and Renyi entropies of either of the regions and demonstrate their dependence on $theta_{rm RL}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا