ﻻ يوجد ملخص باللغة العربية
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.
In this work, we study the phenomena of quantum entanglement by computing de Sitter entanglement entropy from von Neumann measure. For this purpose we consider a bipartite quantum field theoretic setup in presence of axion originating from ${bf Type~
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space
We review the results of refs. [1,2], in which the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, is computed using holography. This is achieved through an appropriate slicing of anti-de Sitter space and the impleme
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to
We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say $R$ and $L$ separated by another region, $C$. We are intereste