ترغب بنشر مسار تعليمي؟ اضغط هنا

Lichnerowicz-Type Theorems for Self-gravitating Systems with Nonlinear Electromagnetic Fields

118   0   0.0 ( 0 )
 نشر من قبل Yuxuan Peng
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a self-gravitating system containing a globally timelike Killing vector and a nonlinear Born-Infeld electromagnetic field and scalar fields. We prove that under certain boundary conditions (asymptotically flat/AdS) there cant be any nontrivial field configurations in the spacetime. To explore nontrivial solutions one should break any of the conditions we imposed. The case with another type of nonlinear electromagnetic field is also analyzed, and similar conclusions have been obtained under certain conditions.


قيم البحث

اقرأ أيضاً

We prove under certain assumptions no-hair theorems for non-canonical self-gravitating static multiple scalar fields in spherically symmetric spacetimes. It is shown that the only static, spherically symmetric and asymptotically flat black hole solut ions consist of the Schwarzschild metric and a constant multi-scalar map. We also prove that there are no static, horizonless, asymptotically flat, spherically symmetric solutions with static scalar fields and a regular center. The last theorem shows that the static, asymptotically flat, spherically symmetric reflecting compact objects with Neumann boundary conditions can not support a non-trivial self-gravitating non-canonical (and canonical) multi-scalar map in their exterior spacetime regions. In order to prove the no-hair theorems we derive a new divergence identity.
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially-symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as the fact that the space-time curvature turns out to be flat and the spinor field gives rise to a vanishing bi-linear scalar $overline{psi}psi=0$ with non-vanishing bi-linear pseudo-scalar $ioverline{psi}gamma^5psi ot=0$: because in quantum field theory general computational methods are built on plane-wave solutions, for which bi-linear pseudo-scalar vanishes while the bi-linear scalar does not vanish, then the solutions we found cannot be treated with the usual machinery of quantum field theory. This means that for the Einstein-Dirac system there exist admissible solutions which nevertheless cannot be quantized with the common prescriptions; we regard this situation as yet another issue of tension between Einstein gravity and quantum principles. Possible ways to quench this tension can be seen either in enlarging the validity of quantum field theory or by restricting the space of the solutions of the Einstein-Dirac system of field equations.
It is shown that the dynamical evolution of linear perturbations on a static space-time is governed by a constrained wave equation for the extrinsic curvature tensor. The spatial part of the wave operator is manifestly elliptic and self-adjoint. In c ontrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. It is also demonstrated how to obtain symmetric pulsation equations for self-gravitating non-Abelian gauge fields, Higgs fields and perfect fluids. For vacuum fluctuations on a vacuum space-time, the Regge-Wheeler and Zerilli equations are rederived.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetr ic solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
In this paper, we study the spontaneous scalarization of an extended, self-gravitating system which is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a real massive scalar field condenses on this Melvin magn etic universe solution when introducing a non-minimal coupling between the scalar field and (a) the magnetic field and (b) the curvature of the space-time, respectively. We find that in both cases, the solutions exist on a finite interval of the coupling constant and that solutions with a number of nodes $k$ in the scalar field exist. For case (a) we observe that the intervals of existence are mutually exclusive for different $k$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا