ترغب بنشر مسار تعليمي؟ اضغط هنا

Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment

73   0   0.0 ( 0 )
 نشر من قبل Kazumasa Kawata
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57~EeV in the northern sky using data collected over a 5 year period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20$^circ$-radius circles. The hotspot has a Li-Ma statistical significance of 5.1$sigma$, and is centered at R.A.=146.7$^{circ}$, Dec.=43.2$^{circ}$. The position of the hotspot is about 19$^{circ}$ off of the supergalactic plane. The probability of a cluster of events of 5.1$sigma$ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7$times$10$^{-4}$ (3.4$sigma$).

قيم البحث

اقرأ أيضاً

An intermediate-scale energy spectrum anisotropy has been found in the arrival directions of ultra-high energy cosmic rays of energies above $10^{19.2}$ eV in the northern hemisphere, using 7 years of data from the Telescope Array surface detector. A relative energy distribution test is done comparing events inside oversampled spherical caps of equal exposure, to those outside, using the Poisson likelihood ratio. The center of maximum significance is at $9^h$$16^m$, $45^{circ}$. and has a deficit of events with energies $10^{19.2}$$leq$$E$$<$$10^{19.75}$ eV and an excess for $E$$geq$$10^{19.75}$ eV. The post-trial probability of this energy anisotropy, appearing by chance anywhere on an isotropic sky, is found by Monte Carlo simulation to be $9$$times$$10^{-5}$ ($3.74$$sigma_{global}$).
332 - T. Abu-Zayyad , R. Aida , M. Allen 2012
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays with primary energies above 1.6 x 10^(18) eV. This measurement is based upon four years of observation by the surface detector component of TA. T he spectrum shows a dip at an energy of 4.6 x 10^(18) eV and a steepening at 5.4 x 10^(19) eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of ultra-high energy cosmic ray surface detector data, that involves generating a complete simulation of ultra-high energy cosmic rays striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the thinning approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
We report on the search for steady point-like sources of neutral particles around 10$^{18}$ eV between 2008 May and 2013 May with the scintillator surface detector of the Telescope Array experiment. We found overall no significant point-like excess a bove 0.5 EeV in the northern sky. Subsequently, we also searched for coincidence with the Fermi bright Galactic sources. No significant coincidence was found within the statistical uncertainty. Hence, we set an upper limit on the neutron flux that corresponds to an averaged flux of 0.07 km$^{-2}$ yr$^{-1}$ for $E>1$ EeV in the northern sky at the 95% confidence level. This is the most stringent flux upper limit in a northern sky survey assuming point-like sources. The upper limit at the 95% confidence level on the neutron flux from Cygnus X-3 is also set to 0.2 km$^{-2}$ yr$^{-1}$ for $E>0.5$ EeV. This is an order of magnitude lower than previous flux measurements.
The results on ultra-high-energy cosmic rays (UHECR) mass composition obtained with the Telescope Array surface detector are presented. The analysis employs the boosted decision tree (BDT) multivariate analysis built upon 14 observables related to bo th the properties of the shower front and the lateral distribution function. The multivariate classifier is trained with Monte-Carlo sets of events induced by the primary protons and iron. An average atomic mass of UHECR is presented for energies $10^{18.0}-10^{20.0} mbox{eV}$. The average atomic mass of primary particles shows no significant energy dependence and corresponds to $langle ln A rangle = 2.0 pm 0.1 (stat.) pm 0.44 (syst.)$. The result is compared to the mass composition obtained by the Telescope Array with $mbox{X}_{mbox{max}}$ technique along with the results of other experiments. Possible systematic errors of the method are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا