ترغب بنشر مسار تعليمي؟ اضغط هنا

Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider

113   0   0.0 ( 0 )
 نشر من قبل Hiroshi Yokoya
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss complementarity of discovery reaches of heavier neutral Higgs bosons and charged Higgs bosons at the LHC and the International Linear Collider (ILC) in two Higgs doublet models (2HDMs). We perform a comprehensive analysis on their production and decay processes for all types of Yukawa interaction under the softly-broken discrete symmetry which is introduced to avoid flavour changing neutral currents, and we investigate parameter spaces of discovering additional Higgs bosons at the ILC beyond the LHC reach. We find that the 500 GeV run of the ILC with the integrated luminosity of 500 fb^{-1} shows an advantage for discovering the additional Higgs bosons in the region where the LHC cannot discover them with the integrated luminosity of 300 fb^{-1}. For the 1 TeV run of the ILC with the integrated luminosity of 1 ab^{-1}, production processes of an additional Higgs boson associated with the top quark can be useful as discovery channels in some parameter spaces where the LHC with the integrated luminosity of 3000 fb^{-1} cannot reach. It is emphasized that the complementary study at the LHC and the ILC is useful not only to survey additional Higgs bosons at the TeV scale, but also to discriminate types of Yukawa interaction in the 2HDM.

قيم البحث

اقرأ أيضاً

79 - S.Y. Choi 2008
The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective $e^+e^-$ International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale . In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.
The LHC is making strides in the exploration of the properties of the newly discoverd Higgs boson, $h$. In Refs.~cite{vonBuddenbrock:2015ema,Kumar:2016vut,vonBuddenbrock:2016rmr} the compatibility of the proton-proton data reported in the Run I perio d with the presence of a heavy scalar, $H$, with a mass around 270,GeV and its implications were explored. This boson would decay predominantly to $Hrightarrow Sh$, where $S$, is a lighter scalar boson. The production cross-section of $pprightarrow H(rightarrow Sh) + X$ is considerable and it would significantly affect the inclusive rate of $h$. The contamination from this new production mechanism would depend strongly on the final state used to measure the rate of $h$. The contamination in the rate measurement of $Vh(rightarrow boverline{b}), V=Z,W$ is estimated to be small. This statement does not depend strongly on assumptions made on the decay of $S$.
In this study we consider an effective model by introducing two hypothetical real scalars, $H$ and $chi$ - a dark matter candidate, where the masses of these scalars are $2 m_h < m_H < 2 m_t$ and $m_chi approx m_h/2$ with $m_h$ and $m_t$ being the St andard Model Higgs boson and top quark masses respectively. A distortion in the transverse momentum distributions of $h$ in the intermediate region of the spectrum through the processes $p p to H to hchichi$ could be observed in this model. An additional scalar, $S$, has been postulated to explain large $H to hchichi$ branching ratios, assuming $m_h lesssim m_S lesssim m_H-m_h$ and $m_S > 2 m_chi$. Furthermore, a scenario of a two Higgs doublet model (2HDM) is introduced and a detailed proposal at the present energies of the Large Hadron Collider to study the extra CP-even ($h, H$), CP-odd ($A$) and charged ($H^pm$) scalars has been pursued. With possible phenomenological implications, all possible spectra and decay modes for these scalars are discussed. Based on the mass spectrum of $H, A$ and $H^pm$, the production of multi-leptons and $Z$+jets+missing-energy events are predicted. A specific, Type-II 2HDM model is discussed in detail.
87 - Felix Sefkow 2014
The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).
The next-to-minimal supersymmetric standard model (NMSSM) with an extended Higgs sector offers one of the Higgs boson as the Standard model (SM) like Higgs with a mass around 125 GeV along with other Higgs bosons with lighter and heavier masses and n ot excluded by any current experiments. At the LHC, phenomenology of these non SM like Higgs bosons is very rich and considerably different from the other supersymmetric models. In this work, assuming one of the Higgs bosons to be the SM like, we revisit the mass spectrum and couplings of non SM like Higgs bosons taking into consideration all existing constraints and identify the relevant region of parameter space. The discovery potential of these non SM like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non SM like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb, {tau}{tau} decay modes appear to be the most promising, it is observed that for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this work we emphasize that this diphoton mode can be exploited to find the NMSSM Higgs signal and can also be potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non SM Higgs bosons at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا