ﻻ يوجد ملخص باللغة العربية
Let $F$ and $G$ be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigate when there is a $Gamma$-contraction $(S,P)$ such that $F$ is the fundamental operator of $(S,P)$ and $G$ is the fundamental operator of $(S^*,P^*)$. Theorem 1 puts a necessary condition on $F$ and $G$ for them to be the fundamental operators of $(S,P)$ and $(S^*,P^*)$ respectively. Theorem 2 shows that this necessary condition is sufficient too provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for $Gamma$-contractions are then applied to tetrablock contractions to figure out when two pairs $(F_1, F_2)$ and $(G_1, G_2)$ acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction $(A, B, P)$ and its adjoint $(A^*, B^*, P^*)$ respectively. This is the content of Theorem 4.
Admissible vectors lead to frames or coherent states under the action of a group by means of square integrable representations. This work shows that admissible vectors can be seen as weights with central support on the (left) group von Neumann algebr
The epsilon-enlargement of a maximal monotone operator is a construct similar to the Br{o}ndsted and Rocakfellar epsilon-subdifferential enlargement of the subdifferential. Like the epsilon-subdifferential, the epsilon-enlargement of a maximal monoto
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k
We study a class of left-invertible operators which we call weakly concave operators. It includes the class of concave operators and some subclasses of expansive strict $m$-isometries with $m > 2$. We prove a Wold-type decomposition for weakly concav
In this article we introduce a new class of Rolewicz-type operators in l_p, $1 le p < infty$. We exhibit a collection F of cardinality continuum of operators of this type which are chaotic and remain so under almost all finite linear combinations, pr