ترغب بنشر مسار تعليمي؟ اضغط هنا

A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization

95   0   0.0 ( 0 )
 نشر من قبل Loshchilov Ilya
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ilya Loshchilov




اسأل ChatGPT حول البحث

We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from $m$ direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows to reduce the time and memory complexity of the sampling to $O(mn)$, where $n$ is the number of decision variables. When $n$ is large (e.g., $n$ > 1000), even relatively small values of $m$ (e.g., $m=20,30$) are sufficient to efficiently solve fully non-separable problems and to reduce the overall run-time.



قيم البحث

اقرأ أيضاً

95 - Ilya Loshchilov 2014
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is widely accepted as a robust derivative-free continuous optimization algorithm for non-linear and non-convex optimization problems. CMA-ES is well known to be almost parameterless, meanin g that only one hyper-parameter, the population size, is proposed to be tuned by the user. In this paper, we propose a principled approach called self-CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters in order to improve its overall performance. Experimental results show that for larger-than-default population size, the default settings of hyper-parameters of CMA-ES are far from being optimal, and that self-CMA-ES allows for dynamically approaching optimal settings.
176 - B. Swenson , S. Kar , 2015
The paper is concerned with distributed learning and optimization in large-scale settings. The well-known Fictitious Play (FP) algorithm has been shown to achieve Nash equilibrium learning in certain classes of multi-agent games. However, FP can be c omputationally difficult to implement when the number of players is large. Sampled FP is a variant of FP that mitigates the computational difficulties arising in FP by using a Monte-Carlo (i.e., sampling-based) approach. The Sampled FP algorithm has been studied both as a tool for distributed learning and as an optimization heuristic for large-scale problems. Despite its computational advantages, a shortcoming of Sampled FP is that the number of samples that must be drawn in each round of the algorithm grows without bound (on the order of $sqrt{t}$, where $t$ is the round of the repeated play). In this paper we propose Computationally Efficient Sampled FP (CESFP)---a variant of Sampled FP in which only one sample need be drawn each round of the algorithm (a substantial reduction from $O(sqrt{t})$ samples per round, as required in Sampled FP). CESFP operates using a stochastic-approximation type rule to estimate the expected utility from round to round. It is proven that the CESFP algorithm achieves Nash equilibrium learning in the same sense as classical FP and Sampled FP. Simulation results suggest that the convergence rate of CESFP (in terms of repeated-play iterations) is similar to that of Sampled FP.
172 - Ilya Loshchilov 2012
This paper focuses on the restart strategy of CMA-ES on multi-modal functions. A first alternative strategy proceeds by decreasing the initial step-size of the mutation while doubling the population size at each restart. A second strategy adaptively allocates the computational budget among the restart settings in the BIPOP scheme. Both restart strategies are validated on the BBOB benchmark; their generality is also demonstrated on an independent real-world problem suite related to spacecraft trajectory optimization.
Critical aspects of computational imaging systems, such as experimental design and image priors, can be optimized through deep networks formed by the unrolled iterations of classical model-based reconstructions (termed physics-based networks). Howeve r, for real-world large-scale inverse problems, computing gradients via backpropagation is infeasible due to memory limitations of graphics processing units. In this work, we propose a memory-efficient learning procedure that exploits the reversibility of the networks layers to enable data-driven design for large-scale computational imaging systems. We demonstrate our method on a small-scale compressed sensing example, as well as two large-scale real-world systems: multi-channel magnetic resonance imaging and super-resolution optical microscopy.
For many applications of pulsed radiation, the time-history of the radiation intensity must be optimized to induce a desired time-history of conditions. This optimization is normally performed using multi-physics simulations of the system. The pulse shape is parametrized, and multiple simulations are performed in which the parameters are adjusted until the desired response is induced. These simulations are often computationally intensive, and the optimization by iteration of parameters in forward simulations is then expensive and slow. In many cases, the desired response can be expressed such that an instantaneous difference between the actual and desired response can be calculated. In principle, a computer program used to perform the forward simulation could be modified to adjust the instantaneous radiation drive automaticaly until the desired instantaneous response is achieved. Unfortunately, such modifications may be impracticable in a complicated multi-physics program. However, the computational time increment in such simulations is generally much shorter than the time scale of changes in the desired response. It is much more practicable to adjust the radiation source so that the response tends toward the desired value at later times. This relaxed in-situ optimization method can give an adequate design for a pulse shape in a single forward simulation, giving a typical gain in computational efficiency of tens to thousands. This approach was demonstrated for the design of laser pulse shapes to induce ramp loading to high pressure in target assemblies incorporating ablators of significantly different mechanical impedance than the sample, requiring complicated pulse shaping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا