ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully-automatic laser welding and micro-sculpting with universal in situ inline coherent imaging

59   0   0.0 ( 0 )
 نشر من قبل James Fraser
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Though new affordable high power laser technologies make possible many processing applications in science and industry, depth control remains a serious technical challenge. Here we show that inline coherent imaging, with line rates up to 312 kHz and microsecond-duration capture times, is capable of directly measuring laser penetration depth in a process as violent as kW-class keyhole welding. We exploit ICIs high speed, high dynamic range and robustness to interference from other optical sources to achieve fully automatic, adaptive control of laser welding as well as ablation, achieving micron-scale sculpting in vastly different heterogeneous biological materials.

قيم البحث

اقرأ أيضاً

Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, XFELs, high harmonic generation, electrons and optical lasers. One of CDIs important applications is to probe dynamic phen omena with high spatio-temporal resolution. Here, we report the development of a general in situ CDI method for real-time imaging of dynamic processes in solution. By introducing a time-invariant overlapping region as a real-space constraint, we show that in situ CDI can simultaneously reconstruct a time series of the complex exit wave of dynamic processes with robust and fast convergence. We validate this method using numerical simulations with coherent X-rays and performing experiments on a materials science and a biological specimen in solution with an optical laser. Our numerical simulations further indicate that in situ CDI can potentially reduce the radiation dose by more than an order of magnitude relative to conventional CDI. As coherent X-rays are under rapid development worldwide, we expect in situ CDI could be applied to probe dynamic phenomena ranging from electrochemistry, structural phase transitions, charge transfer, transport, crystal nucleation, melting and fluid dynamics to biological imaging.
315 - M. Wisse , L. Marot , B. Eren 2012
A laser ablation system has been constructed and used to determine the damage threshold of stainless steel, rhodium and single-, poly- and nanocrystalline molybdenum in vacuum, at a number of wavelengths between 220 and 1064 nm using 5 ns pulses. All materials show an increase of the damage threshold with decreasing wavelength below 400 nm. Tests in a nitrogen atmosphere showed a decrease of the damage threshold by a factor of two to three. Cleaning tests have been performed in vacuum on stainless steel samples after applying mixed Al/W/C/D coatings using magnetron sputtering. In situ XPS analysis during the cleaning process as well ex situ reflectivity measurements demonstrate near complete removal of the coating and a substantial recovery of the reflectivity. The first results also show that the reflectivity obtained through cleaning at 532 nm may be further increased by additional exposure to UV light, in this case 230 nm, an effect which is attributed to the removal of tungsten dust from the surface.
The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent sc attering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.
Photonic or electronic confinement effects in nanostructures become significant when one of their dimension is in the 5-300 nm range. Improving their development requires the ability to study their structure - shape, strain field, interdiffusion maps - using novel techniques. We have used coherent diffraction imaging to record the 3-dimensionnal scattered intensity of single silicon nanowires with a lateral size smaller than 100 nm. We show that this intensity can be used to recover the hexagonal shape of the nanowire with a 28nm resolution. The article also discusses limits of the method in terms of radiation damage.
We have developed a prototype time-resolved neutron imaging detector employing the micro-pixel chamber (muPIC), a micro-pattern gaseous detector, coupled with a field programmable gate array-based data acquisition system for applications in neutron r adiography at high-intensity neutron sources. The prototype system, with an active area of 10cm x 10cm and operated at a gas pressure of 2 atm, measures both the energy deposition (via time-over-threshold) and 3-dimensional track of each neutron-induced event, allowing the reconstruction of the neutron interaction point with improved accuracy. Using a simple position reconstruction algorithm, a spatial resolution of 349 +/- 36 microns was achieved, with further improvement expected. The detailed tracking allows strong rejection of background gamma-rays, resulting in an effective gamma sensitivity of 10^-12 or less, coupled with stable, robust neutron identification. The detector also features a time resolution of 0.6 microseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا