ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analytic Grothendieck Riemann Roch Theorem

230   0   0.0 ( 0 )
 نشر من قبل Xiang Tang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the Boutet de Monvel Toeplitz index theorem to complex manifold with isolated singularities following the relative $K$-homology theory of Baum, Douglas, and Taylor for manifold with boundary. We apply this index theorem to study the Arveson-Douglas conjecture. Let $ball^m$ be the unit ball in $mathbb{C}^m$, and $I$ an ideal in the polynomial algebra $mathbb{C}[z_1, cdots, z_m]$. We prove that when the zero variety $Z_I$ is a complete intersection space with only isolated singularities and intersects with the unit sphere $mathbb{S}^{2m-1}$ transversely, the representations of $mathbb{C}[z_1, cdots, z_m]$ on the closure of $I$ in $L^2_a(ball^m)$ and also the corresponding quotient space $Q_I$ are essentially normal. Furthermore, we prove an index theorem for Toeplitz operators on $Q_I$ by showing that the representation of $mathbb{C}[z_1, cdots, z_m]$ on the quotient space $Q_I$ gives the fundamental class of the boundary $Z_Icap mathbb{S}^{2m-1}$. In the appendix, we prove with Kai Wang that if $fin L^2_a(ball^m)$ vanishes on $Z_Icap ball ^m$, then $f$ is contained inside the closure of the ideal $I$ in $L^2_a(ball^m)$.



قيم البحث

اقرأ أيضاً

We produce a Grothendieck transformation from bivariant operational $K$-theory to Chow, with a Riemann-Roch formula that generalizes classical Grothendieck-Verdier-Riemann-Roch. We also produce Grothendieck transformations and Riemann-Roch formulas t hat generalize the classical Adams-Riemann-Roch and equivariant localization theorems. As applications, we exhibit a projective toric variety $X$ whose equivariant $K$-theory of vector bundles does not surject onto its ordinary $K$-theory, and describe the operational $K$-theory of spherical varieties in terms of fixed-point data. In an appendix, Vezzosi studies operational $K$-theory of derived schemes and constructs a Grothendieck transformation from bivariant algebraic $K$-theory of relatively perfect complexes to bivariant operational $K$-theory.
We give an informal exposition of pushforwards and orientations in generalized cohomology theories in the language of spectra. The whole note can be seen as an attempt at convincing the reader that Todd classes in Grothendieck-Hirzebruch-Riemann-Roch type formulas are not Devils appearances but rather that things just go in the most natural possible way.
164 - Michele Vergne 2016
Let G be a torus and M a G-Hamiltonian manifold with Kostant line bundle L and proper moment map. Let P be the weight lattice of G. We consider a parameter k and the multiplicity $m(lambda,k)$ of the quantized representation associated to M and the k -th power of L . We prove that the weighted sum $sum m(lambda,k) f(lambda/k)$ of the value of a test function f on points of the lattice $P/k$ has an asymptotic development in terms of the twisted Duistermaat-Heckman distributions associated to the graded Todd class of M. When M is compact, and f polynomial, the asymptotic series is finite and exact.
For each graph on two vertices, and each divisor on the graph in the sense of Baker-Norine, we describe a sheaf of vector spaces on a finite category whose zeroth Betti number is the Baker-Norine Graph Riemann-Roch rank of the divisor plus one. We pr ove duality theorems that generalize the Baker-Norine Graph Riemann-Roch Theorem.
The Quillen connection on ${mathcal L} rightarrow {mathcal M}_g$, where ${mathcal L}^*$ is the Hodge line bundle over the moduli stack of smooth complex projective curves curves ${mathcal M}_g$, $g geq 5$, is uniquely determined by the condition that its curvature is the Weil--Petersson form on ${mathcal M}_g$. The bundle of holomorphic connections on ${mathcal L}$ has a unique holomorphic isomorphism with the bundle on ${mathcal M}_g$ given by the moduli stack of projective structures. This isomorphism takes the $C^infty$ section of the first bundle given by the Quillen connection on ${mathcal L}$ to the $C^infty$ section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا