ترغب بنشر مسار تعليمي؟ اضغط هنا

Separated Response Function Ratios in Exclusive, Forward pi^{+/-} Electroproduction

101   0   0.0 ( 0 )
 نشر من قبل Garth Huber
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of exclusive $pi^{pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=sigma_L^{pi^-}/sigma_L^{pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=sigma_T^{pi^-}/sigma_T^{pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to pQCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive $pi^{pm}$ electroproduction on the deuteron at central $Q^2$ values of 0.6, 1.0, 1.6 GeV$^2$ at $W$=1.95 GeV, and $Q^2=2.45$ GeV$^2$ at $W$=2.22 GeV. Here, we present the $L$ and $T$ cross sections, with emphasis on $R_L$ and $R_T$, and compare them with theoretical calculations. Results for the separated ratio $R_L$ indicate dominance of the pion-pole diagram at low $-t$, while results for $R_T$ are consistent with a transition between pion knockout and quark knockout mechanisms.



قيم البحث

اقرأ أيضاً

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCDs transition from meson-nucleon degrees of fr eedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $pi^-$ and $pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Method: Data were acquired with 2.6-5.2 GeV electron beams and the HMS+SOS spectrometers in Jefferson Lab Hall C, at central $Q^2$ values of 0.6, 1.0, 1.6 GeV$^2$ at W=1.95 GeV, and $Q^2$=2.45 GeV$^2$ at W=2.22 GeV. There was significant coverage in $phi$ and $epsilon$, which allowed separation of $sigma_{L,T,LT,TT}$. Results: $sigma_L$ shows a clear signature of the pion pole, with a sharp rise at small -t. In contrast, $sigma_T$ is much flatter versus t. The longitudinal/transverse ratios evolve with $Q^2$ and t, and at the highest $Q^2$=2.45 GeV$^2$ show a slight enhancement for $pi^-$ production compared to $pi^+$. The $pi^-/pi^+$ ratio for transverse photons exhibits only a small $Q^2$-dependence, following a nearly universal curve with t, with a steep transition to a value of about 0.25, consistent with s-channel quark knockout. The $sigma_{TT}/sigma_T$ ratio also drops rapidly with $Q^2$, qualitatively consistent with s-channel helicity conservation. The $pi^-/pi^+$ ratio for longitudinal photons indicates a small isoscalar contamination at W=1.95 GeV, consistent with what was observed in our earlier determination of the pion form factor at these kinematics.
311 - K. Park , M. Guidal , R. W. Gothe 2012
The exclusive electroproduction of $pi^+$ above the resonance region was studied using the $rm{CEBAF}$ Large Acceptance Spectrometer ($rm{CLAS}$) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of $rm{CLAS}$, together with the high luminosity, allowed us to measure the cross section for the $gamma^* p to n pi^+$ process in 140 ($Q^2$, $x_B$, $t$) bins: $0.16<x_B<0.58$, 1.6 GeV$^2<$$Q^2$$<4.5$ GeV$^2$ and 0.1 GeV$^2<$$-t$$<5.3$ GeV$^2$. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.
134 - I. Bedlinskiy 2014
Exclusive neutral-pion electroproduction ($epto e^prime p^prime pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_pi$ and structure functions $sigma_T+epsilo nsigma_L, sigma_{TT}$ and $sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
143 - V.D. Burkert , V.I. Mokeev , 2019
The results on the photo- and electroexcitation amplitudes of most nucleon resonances in the mass range up to 2.0 GeV determined from the CLAS experimental data on exclusive $pi^+pi^-p$ photo-/electroproduction off protons in collaboration between th e Jefferson Lab and Moscow State University are presented. The first and only available results on electroexcitation amplitudes from CLAS in a wide range of photon virtualities $Q^2$ $<$ 5.0 GeV$^2$ revealed the nucleon resonance structure as a complex interplay between the inner core of three dressed quarks and external meson-baryon cloud. These results shed light on the strong QCD dynamics which underlines the generation of excited nucleon states of different structural features from confined quarks and gluons. The future prospects of these studies in the new era of experiments with the CLAS12 detector, which started successfully in Spring of 2018, are outlined.
156 - S. Basnet , G.M. Huber , W.B. Li 2019
Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. Purpose: To study the tran sition between non-perturbative and perturbative Quantum Chromodyanmics as the square of four momentum transfer to the struck proton, -t, is increased. Method: Cross sections for the $^1$H(e,e$pi^+$)n reaction were measured over the -t range of 0.272 to 2.127 GeV$^2$ with limited azimuthal coverage at fixed beam energy of 4.709 GeV, Q$^2$ of 2.4 GeV$^2$ and W of 2.0 GeV at the Thomas Jefferson National Accelerator Facility (JLab) Hall C. Results: The -t dependence of the measured $pi^+$ electroproduction cross section generally agrees with prior data from JLab Halls B and C. The data are consistent with a Regge amplitude based theoretical model, but show poor agreement with a Generalized Parton Distribution (GPD) based model. Conclusion: The agreement of cross sections with prior data implies small contribution from the interference terms, and the confirmation of the change in t-slopes between the low and high -t regions previously observed in photoproduction indicates the changing nature of the electroproduction reaction in our kinematic regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا