ﻻ يوجد ملخص باللغة العربية
In this article, we investigate F-pure thresholds of polynomials that are homogeneous under some N-grading, and have an isolated singularity at the origin. We characterize these invariants in terms of the base p expansion of the corresponding log canonical threshold. As an application, we are able to make precise some bounds on the difference between F-pure and log canonical thresholds established by Mustac{t}u{a} and the fourth author. We also examine the set of primes for which the F-pure and log canonical threshold of a polynomial must differ. Moreover, we obtain results in special cases on the ACC conjecture for F-pure thresholds, and on the upper semi-continuity property for the F-pure threshold function.
We give examples of two dimensional normal ${mathbb Q}$-Gorenstein graded domains, where the set of $F$-thresholds of the maximal ideal is not discrete, thus answering a question by Mustac{t}u{a}-Takagi-Watanabe. We also prove that, for a two dimen
We had shown earlier that for a standard graded ring $R$ and a graded ideal $I$ in characteristic $p>0$, with $ell(R/I) <infty$, there exists a compactly supported continuous function $f_{R, I}$ whose Riemann integral is the HK multiplicity $e_{HK}(R
The purpose of this note is to revisit the results of arXiv:1407.4324 from a slightly different perspective, outlining how, if the integral closures of a finite set of prime ideals abide the expected convexity patterns, then the existence of a peculi
We give a characterization of the Lefschetz elements in Artinian Gorenstein rings over a field of characteristic zero in terms of the higher Hessians. As an application, we give new examples of Artinian Gorenstein rings which do not have the strong Lefschetz property.
We give sufficient conditions for F-injectivity to deform. We show these conditions are met in two common geometrically interesting setting, namely when the special fiber has isolated CM-locus or is F-split.