ترغب بنشر مسار تعليمي؟ اضغط هنا

Spacetime-symmetry violations: motivations, phenomenology, and tests

230   0   0.0 ( 0 )
 نشر من قبل Ralf Lehnert
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Ralf Lehnert




اسأل ChatGPT حول البحث

An important open question in fundamental physics concerns the nature of spacetime at distance scales associated with the Planck length. The widespread belief that probing such distances necessitates Planck-energy particles has impeded phenomenological and experimental research in this context. However, it has been realized that various theoretical approaches to underlying physics can accommodate Planck-scale violations of spacetime symmetries. This talk surveys the motivations for spacetime-symmetry research, the SME test framework, and experimental efforts in this field.



قيم البحث

اقرأ أيضاً

124 - Ralf Lehnert 2007
The Lorentz- and CPT-violating Chern-Simons extension of electrodynamics is considered. In the context of N=4 supergravity in four spacetime dimensions, it is argued that cosmological solutions can generate this extension. Within Chern-Simons electro dynamics, theoretical and phenomenological topics are reviewed that concern the number of the remaining spacetime symmetries and the vacuum Cherenkov effect, respectively.
107 - Ralf Lehnert 2006
The violation of spacetime symmetries provides a promising candidate signal for underlying physics, possibly arising at the Planck scale. This talk gives an overview over various aspects in the field, including some mechanisms for Lorentz breakdown, the SME test framework, and phenomenological signatures for such effects.
Cosmological observations as well as theoretical approaches to physics beyond the Standard Model provide strong motivations for experimental tests of fundamental symmetries, such as CPT invariance. In this context, the availability of cold baryonic a ntimatter at CERN has opened an avenue for ultrahigh-precision comparisons of protons and antiprotons in Penning traps. This work discusses an experimental method inspired by quantum logic techniques that will improve particle localization and readout speed in such experiments. The method allows for sympathetic cooling of the (anti-)proton to its quantum-mechanical ground state as well as the readout of its spin alignment, replacing the commonly used continuous Stern-Gerlach effect. Both of these features are achieved through coupling to a laser-cooled `logic ion co-trapped in a double-well potential. This technique will boost the measurement sampling rate and will thus provide results with lower statistical uncertainty, contributing to stringent searches for time dependent variations in the data. Such measurements ultimately yield extremely high sensitivities to CPT violating coefficients acting on baryons in the Standard-Model Extension, will allow the exploration of previously unmeasured types of symmetry violations, and will enable antimatter-based axion-like dark matter searches with improved mass resolution.
It has been suggested that the high symmetries in the Schrodinger equation with the Coulomb or harmonic oscillator potentials may remain in the corresponding relativistic Dirac equation. If the principle is correct, in the Dirac equation the potentia l should have a form as ${(1+beta)over 2}V(r)$ where $V(r)$ is ${-e^2over r}$ for hydrogen atom and $kappa r^2$ for harmonic oscillator. However, in the case of hydrogen atom, by this combination the spin-orbit coupling term would not exist and it is inconsistent with the observational spectra of hydrogen atom, so that the symmetry of SO(4) must reduce into SU(2). The governing mechanisms QED and QCD which induce potential are vector-like theories, so at the leading order only vector potential exists. However, the higher order effects may cause a scalar fraction. In this work, we show that for QED, the symmetry restoration is very small and some discussions on the symmetry breaking are made. At the end, we briefly discuss the QCD case and indicate that the situation for QCD is much more complicated and interesting.
In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. C ouplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of $10^{-8}$, $10^{-6}$ and $10^{-2}$ for $mu$-$e$, $tau$-$e$ and $t$-$e$, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor $|cos onehalf theta_W|$ where $theta_W$ is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا