ترغب بنشر مسار تعليمي؟ اضغط هنا

Single spin stochastic optical reconstruction microscopy

317   0   0.0 ( 0 )
 نشر من قبل Philipp Neumann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.



قيم البحث

اقرأ أيضاً

Exotic magnetic structures, such as magnetic skyrmions and domain walls, are becoming more important in nitrogen-vacancy center scanning magnetometry. However, a systematic imaging approach to mapping stray fields with fluctuation of several millites las generated by such structures is not yet available. Here we present a scheme to image a millitesla magnetic field by tracking the magnetic resonance frequency, which can record multiple contour lines for a magnetic field. The radial basis function algorithm is employed to reconstruct the magnetic field from the contour lines. Simulations with shot noise quantitatively confirm the high quality of the reconstruction algorithm. The method was validated by imaging the stray field of a frustrated magnet. Our scheme had a maximum detectable magnetic field gradient of 0.86 mT per pixel, which enables the efficient imaging of millitesla magnetic fields.
Nitrogen vacancy (NV) centers in diamond have emerged as a leading quantum sensor platform, combining exceptional sensitivity with nanoscale spatial resolution by optically detected magnetic resonance (ODMR). Because fluorescence-based ODMR technique s are limited by low photon collection efficiency and modulation contrast, there has been growing interest in infrared (IR)-absorption-based readout of the NV singlet state transition. IR readout can improve contrast and collection efficiency, but it has thus far been limited to long-pathlength geometries in bulk samples due to the small absorption cross section of the NV singlet state. Here, we amplify the IR absorption by introducing a resonant diamond metallodielectric metasurface that achieves a quality factor of Q ~ 1,000. This plasmonic quantum sensing metasurface (PQSM) combines localized surface plasmon polariton resonances with long-range Rayleigh-Wood anomaly modes and achieves the desired balance between field localization and sensing volume to optimize spin readout sensitivity. From combined electromagnetic and rate-equation modeling, we estimate a sensitivity below 1 nT/Hz$^{1/2}$ per um$^2$ of sensing area using numbers for present-day NV diamond samples and fabrication techniques. The proposed PQSM enables a new form of microscopic ODMR sensing with infrared readout near the spin-projection-noise-limited sensitivity, making it appealing for the most demanding applications such as imaging through scattering tissue and spatially-resolved chemical NMR detection.
Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single mode fiber. A switching efficiency of 97% is achieved with a $sim1.7$,ps switching time , and signal-to-noise ratio of $sim800$. Preservation of the quantum state is confirmed by measuring no significant increase in the second-order autocorrelation function $g^{(2)}(0)$. These values are attained with only nanojoule level pump energies that are produced by a laser oscillator with 80,MHz repetition rate. The results highlight a simple switching device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum process ors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.
We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا