ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

112   0   0.0 ( 0 )
 نشر من قبل James Mason
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatorys (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatorys (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatorys (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.



قيم البحث

اقرأ أيضاً

We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and f ind that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; ~1200 km/s) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; ~700 km/s). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerf ul ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.
Coronal mass ejections (CMEs) are often associated with coronal dimmings, i.e. transient dark regions that are most distinctly observed in Extreme Ultra-violet (EUV) wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Em ission Measure (DEM) diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50-70%. Five of the events also reveal an associated drop in temperature of 5-25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10-45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20-30 min after the flare start, and does not recover for at least 10 hrs later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1-2 hrs. The pre-event temperatures are higher in the core dimming (1.7-2.6 MK) than in the secondary dimming regions (1.6-2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 AA and 193 AA filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.
On 2010 August 14, a wide-angled coronal mass ejection (CME) was observed. This solar eruption originated from a destabilized filament that connected two active regions and the unwinding of this filament gave the eruption an untwisting motion that dr ew the attention of many observers. In addition to the erupting filament and the associated CME, several other low-coronal signatures that typically indicate the occurrence of a solar eruption were associated to this event. However, contrary to what is expected, the fast CME ($mathrm{v}>900~mathrm{km}~mathrm{s}^{-1}$) was accompanied by only a weak C4.4 flare. We investigate the various eruption signatures that were observed for this event and focus on the kinematic evolution of the filament in order to determine its eruption mechanism. Had this solar eruption occurred just a few days earlier, it could have been a significant event for space weather. The risk to underestimate the strength of this eruption based solely on the C4.4 flare illustrates the need to include all eruption signatures in event analyses in order to obtain a complete picture of a solar eruption and assess its possible space weather impact.
129 - J. X. Cheng , J. Qiu 2016
Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting ma terial expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of its eruption. In this study, we analyze the event of flare, CME, and coronal dimming on December 26, 2011. We use the data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories to obtain the height and velocity of the associated CMEs observed at the limb. We also measure magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution well tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis, we infer the process of the CME expansion, and estimate properties of the CME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا