ﻻ يوجد ملخص باللغة العربية
The unitary Fermi gas (UFG) offers an unique opportunity to study quantum turbulence both experimentally and theoretically in a strongly interacting fermionic superfluid. It yields to accurate and controlled experiments, and admits the only dynamical microscopic description via time-dependent density functional theory (DFT) - apart from dilute bosonic gases - of the crossing and reconnection of superfluid vortex lines conjectured by Feynman in 1955 to be at the origin of quantum turbulence in superfluids at zero temperature. We demonstrate how various vortex configurations can be generated by using well established experimental techniques: laser stirring and phase imprinting. New imagining techniques demonstrated by the MIT group [Ku et al. arXiv:1402.7052] should be able to directly visualize these crossings and reconnections in greater detail than performed so far in liquid helium. We demonstrate the critical role played by the geometry of the trap in the formation and dynamics of a vortex in the UFG and how laser stirring and phase imprint can be used to create vortex tangles with clear signatures of the onset of quantum turbulence.
Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretic
In a recent article, Yefsah et al. [Nature 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of mag
We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas Fermi (ETF) with a unitary equation of state. Small amplitude fl
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an infinite s-wave inter-atomic scattering length. First we introduce an efficient Thomas-Fermi-von Weizsacker density functional which describes accurately various static prope
We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature