ﻻ يوجد ملخص باللغة العربية
We study the $f^+$ form factor for the semileptonic $bar B_sto K^+ell^-bar u_ell$ decay in a constituent quark model. The valence quark estimate is supplemented with the contribution from the $bar B^*$ pole that dominates the high $q^2$ region. We use a multiply-subtracted Omn`es dispersion relation to extend the quark model predictions from its region of applicability near $q^2_{rm max}=(M_{B_s}-M_K)^2sim 23.75$ GeV$^2$ to all $q^2$ values accessible in the physical decay. To better constrain the dependence of $f^+$ on $q^2$, we fit the subtraction constants to a combined input from previous light cone sum rule [Phys. Rev. D 78 (2008) 054015] and the present quark model results. From this analysis, we obtain $Gamma(bar B_sto K^+ell^-bar u_ell)=(5.45^{+0.83}_{-0.80})|V_{ub}|^2times 10^{-9},{rm MeV}$, which is about 20% higher than the prediction based only on QCD light cone sum rule estimates. Differences are much larger for the $f^+$ form factor in the region above $q^2=15$ GeV$^2$.
We study the $f^+$ form factor for the $bar B_sto K^+ell^-bar u_ell$ semileptonic decay in a nonrelativistic quark model. The valence quark contribution is supplemented with a $bar B^*$-pole term that dominates the high $q^2$ region. To extend the qu
Combining the recent developments of the observations of $Omega$ sates we calculate the $Omega$ spectrum up to the $N=2$ shell within a nonrelativistic constituent quark potential model. Furthermore, the strong and radiative decay properties for the
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t
A simple analysis of time-dependent $B_sto K^+K^-$ transitions, based on recent results from the LHCb experiment, is presented. The benefits of adopting a fully consistent theoretical description of the $B^0_s$--$bar B^0_s$ mixing are stressed. It is
In this work we calculate the mass spectrum of strangeonium up to the $3D$ multiplet within a nonrelativistic linear potential quark model. Furthermore, using the obtained wave functions, we also evaluate the strong decays of the strangeonium states