ﻻ يوجد ملخص باللغة العربية
We investigate the process of rapid star formation quenching in a sample of 12 massive galaxies at intermediate redshift (z~0.6) that host high-velocity ionized gas outflows (v>1000 km/s). We conclude that these fast outflows are most likely driven by feedback from star formation rather than active galactic nuclei (AGN). We use multiwavelength survey and targeted observations of the galaxies to assess their star formation, AGN activity, and morphology. Common attributes include diffuse tidal features indicative of recent mergers accompanied by bright, unresolved cores with effective radii less than a few hundred parsecs. The galaxies are extraordinarily compact for their stellar mass, even when compared with galaxies at z~2-3. For 9/12 galaxies, we rule out an AGN contribution to the nuclear light and hypothesize that the unresolved core comes from a compact central starburst triggered by the dissipative collapse of very gas-rich progenitor merging disks. We find evidence of AGN activity in half the sample but we argue that it accounts for only a small fraction (<10%) of the total bolometric luminosity. We find no correlation between AGN activity and outflow velocity and we conclude that the fast outflows in our galaxies are not powered by on-going AGN activity, but rather by recent, extremely compact starbursts.
We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit >1000 km/s outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically c
We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS
A set of 66 3D hydrodynamical simulations explores how galactic stellar mass affects three-phase, starburst-driven outflows. Simulated velocities are compared to two basic analytic models: with (Johnson & Axford 1971) and without (Chevalier & Clegg 1
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous