ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible completely pointed modules of quantum groups of type $A$

264   0   0.0 ( 0 )
 نشر من قبل Evan Wilson
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a classification of all irreducible completely pointed $U_q(mathfrak{sl}_{n+1})$ modules over a characteristic zero field in which $q$ is not a root of unity. This generalizes the classification result of Benkart, Britten and Lemire in the non quantum case. We also show that any infinite-dimensional irreducible completely pointed $U_q(mathfrak{sl}_{n+1})$ can be obtained from some irreducible completely pointed module over the quantized Weyl algebra $A_{n+1}^q$.



قيم البحث

اقرأ أيضاً

We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including a rather complete description of the rank one case.
271 - John Murray 2017
We determine the dual modules of all irreducible modules of alternating groups over fields of characteristic 2.
For an irreducible module $P$ over the Weyl algebra $mathcal{K}_n^+$ (resp. $mathcal{K}_n$) and an irreducible module $M$ over the general liner Lie algebra $mathfrak{gl}_n$, using Shens monomorphism, we make $Potimes M$ into a module over the Witt a lgebra $W_n^+$ (resp. over $W_n$). We obtain the necessary and sufficient conditions for $Potimes M$ to be an irreducible module over $W_n^+$ (resp. $W_n$), and determine all submodules of $Potimes M$ when it is reducible. Thus we have constructed a large family of irreducible weight modules with many different weight supports and many irreducible non-weight modules over $W_n^+$ and $W_n$.
We provide a classification and an explicit realization of all irreducible Gelfand-Tsetlin modules of the complex Lie algebra sl(3). The realization of these modules uses regular and derivative Gelfand-Tsetlin tableaux. In particular, we list all sim ple Gelfand-Tsetlin sl(3)-modules with infinite-dimensional weight spaces. Also, we express all simple Gelfand-Tsetlin sl(3)-modules as subquotionets of localized Gelfand-Tsetlin E_{21}-injective modules.
144 - Hideya Watanabe 2019
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group, and study their properties along the lines of the representation theory of weight modules over a quantum group. In several cases, we classify the finite-dimensional irreducible classical weight modules by a highest weight theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا