ترغب بنشر مسار تعليمي؟ اضغط هنا

Activity report of ILD-TPC Asia group

91   0   0.0 ( 0 )
 نشر من قبل Yukihiro Kato
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of ILD-TPC Asia group is realization of high precision Time Projection Chamber (TPC) with Gas Electron Multiplier (GEM) as a central tracker in International Linear Collider (ILC). We have been studying the many R&D items to build the real detector as a member of LCTPC collaboration. This paper describes the our efforts for realization of the ILD-TPC, the result of test beam using large prototype TPC, local field distortion, positive ion effects and gate devices, and cooling electronics which are key items to build ILD-TPC.


قيم البحث

اقرأ أيضاً

International Large Detector (ILD) adopts Particle Flow Algorithm (PFA) for precise measurement of multiple jets. The electromagnetic calorimeter (ECAL) of ILD has two candidates sensor technologies for PFA, which are pixelized silicon sensors and sc intillator-strips with silicon photomultipliers. Pixelized silicon sensors have higher granularity for PFA, however they have an issue of cost reduction. In contrast, scintillator-strips have an advantage of relatively low cost and a disadvantage of degradation of position resolution by ghost hits, which are generated by orthogonal arrangement. Hybrid ECAL using both candidates is proposed to supplement these disadvantages. In this paper, we report an optimization study of the hybrid ECAL using detector simulation.
A large scale Monte Carlo production has been pursued since spring 2018 for the ILD detector optimization studies based on physics benchmark processes. A production system based on ILCDirac has been developed to produce samples in timely manner. The system and its performance are presented.
The scintillator-strip electromagnetic calorimeter (ScECAL) is one of the calorimeter technic for the ILC. To achieve the fine granularity from the strip-segmented layers the strips in odd layers are orthogonal with respect to those in the even layer s. In order to extract the best performance from such detector concept, a special reconstruction method and simulation tools are being developed in ILD collaboration. This manuscript repots the status of developing of those tools.
The International Large Detector (ILD) is a proposed detector for the International Linear Collider (ILC). It has been designed to achieve an excellent jet energy resolution by using Particle Flow Algorithms (PFA), which rely on the ability to separa te nearby particles within jets. PFA requires calorimeters with high granularity. The ILD Electromagnetic Calorimeter (ECAL) is a sampling calorimeter with thirty tungsten absorber layers. The total thickness of this ECAL is about 24 X$_0$, and it has between 10 and 100 million channels to make high granularity. Silicon sensors are a candidate technology for the sensitive layers of this ECAL. Present prototypes of these sensors have 256 5.5$times$5.5 mm$^2$ pixels in an area of 9$times$9 cm$^2$.We have measured various properties of these prototype sensors: the leakage current, capacitance, and full depletion voltage. We have also examined the response to an infrared laser to understand the sensors response at its edge and between pixel readout pads, as well the effect of different guard ring designs. In this paper, we show results from these measurements and discuss future works.
Tau-lepton decays with up to two $pi^0$s in the final state, $tau^+ to pi^+ bar{ u}_tau$, $rho^+ (pi^+pi^0) bar{ u}_tau$, $a^+_1 (pi^+pi^0pi^0) bar{ u}_tau$, are used to study the performance of the barrel part of the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) of the International Large Detector (ILD) at the future $e^+-e^-$ International Linear Collider. A correct reconstruction of the tau decay mode is crucial for constraining the tau spin state and measuring the Higgs boson CP state in $Hto tau^+tau^-$ decays. About 95% of $pi^+ bar{ u}_tau$ and 90% of $rho^+bar{ u}_tau$ and $a^+_1bar{ u}_tau$ decays from $e^+e^-to Z^0to tau^+tau^-$ reaction at $e^pm$-beam energy of 125 GeV are correctly reconstructed. In a smaller ILD detector, with Si-W ECAL radius reduced by about 20% these numbers degrade by at most 2%. The $pi^0$ mass resolution stays below 10%. Since the failures in the tau-lepton reconstruction are mainly due to photons, the increase of the ILD magnetic field from 3.5 T to 4 T does not bring any significant improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا