ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot horizontal branch stars in NGC 288 - effects of diffusion and stratification on their atmospheric parameters

61   0   0.0 ( 0 )
 نشر من قبل Sabine Moehler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC288 is a globular cluster with a well-developed blue horizontal branch covering the u-jump that indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. We compare observed abundances with predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition, we investigate the nature of the overluminous blue HB stars around the u-jump. We defined a new photometric index sz from uvby measurements that is gravity-sensitive between 8000K and 12000K. Using medium-resolution spectra and Stroemgren photometry, we determined atmospheric parameters (T_eff, log g) and abundances for the blue HB stars. We used both homogeneous and stratified model spectra for our spectroscopic analyses. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9000K and 14000K. Outside this temperature range, however, they instead follow the results found for such stars in omega Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10^-7 M0. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. When effective temperatures, surface gravities, and masses are determined with stratified model spectra, the hotter stars agree better with canonical evolutionary predictions. Our results show definite promise towards solving the long-standing problem of surface gravity and mass discrepancies for hot HB stars, but much work is still needed to arrive at a self-consistent solution.


قيم البحث

اقرأ أيضاً

271 - S. Moehler , S. Dreizler , T. Lanz 2010
UV observations of some massive globular clusters have revealed a significant population of stars hotter and fainter than the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population postulated to exist in some clusters. Previous spectroscopic analyses of blue hook stars in omega Cen and NGC 2808 support the late hot flasher scenario, but the stars contain much less helium than expected and the predicted C and N enrichment cannot be verified. We compare the observed effective temperatures, surface gravities, helium abundances, and carbon line strengths (where detectable) of our targets stars with the predictions of the two aforementioned scenarios. Moderately high resolution spectra of hot HB stars in the globular cluster omega Cen were analysed for radial velocity variations, atmospheric parameters, and abundances using LTE and non-LTE model atmospheres. We find no evidence of close binaries among our target stars. All stars below 30,000K are helium-poor and very similar to HB stars observed in that temperature range in other globular clusters. In the temperature range 30,000K to 50,000K, we find that 28% of our stars are helium-poor (log(He/H) < -1.6), while 72% have roughly solar or super-solar helium abundance (log(He/H) >= -1.5). We also find that carbon enrichment is strongly correlated with helium enrichment, with a maximum carbon enrichment of 3% by mass. A strong carbon enrichment in tandem with helium enrichment is predicted by the late hot flasher scenario, but not by the helium-enrichment scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence.
126 - S. Cassisi 2009
We investigate a peculiar feature at the hottest, blue end of the horizontal branch of Galactic globular cluster omega Centauri, using the high-precision and nearly complete catalog that has been constructed from a survey taken with the ACS on board the HST, that covers the inner 10x10 arcminutes. It is a densely populated clump of stars with an almost vertical structure in the F435W-(F435W-F625W) plane, that we termed blue clump. A comparison with theoretical models leads to the conclusion that this feature must necessarily harbor either hot flasher stars, or canonical He-rich stars --progeny of the blue Main Sequence sub population observed in this cluster-- or a mixture of both types, plus possibly a component from the normal-He population hosted by the cluster. A strong constraint coming from theory is that the mass of the objects in the blue clump has to be very finely tuned, with a spread of at most only $sim$0.03Mo. By comparing observed and theoretical star counts along both the H- and He-burning stages we then find that at least 15% of the expected He-rich Horizontal Branch stars are missing from the color-magnitude diagram. This missing population could be the progeny of red giants that failed to ignite central He-burning and have produced He-core White Dwarfs. Our conclusion supports the scenario recently suggested by Calamida et al. (2008) for explaining the observed ratio of White Dwarfs to Main Sequence stars in omega Centauri.
We used FLAMES+GIRAFFE (Medusa mode) at the VLT to obtain moderately high resolution spectra for 30 red horizontal branch (RHB) stars, 4 RR Lyrae variables, and 17 blue horizontal branch (BHB) stars in the low-concentration, moderately metal-rich glo bular cluster NGC6723 ([Fe/H]=-1.22+/-0.08 from our present sample). The spectra were optimized to derive O and Na abundances. In addition, we obtained abundances for other elements, including N, Fe, Mg, Ca, Ni, and Ba. We used these data to discuss the evidence of a connection between the distribution of stars along the horizontal branch (HB) and the multiple populations that are typically present in globular clusters. We found that all RHB and most (13 out of 17) BHB stars are O-rich, Na-poor, and N-poor; these stars probably belong to the first stellar generation in this cluster. Only the four warmest observed stars are (moderately) O-poor, Na-rich, and N-rich, and they probably belong to the second generation. While our sample is not fully representative of the whole HB population in NGC6723, our data suggest that in this cluster only HB stars warmer than ~9000 K, that is one fourth of the total, belong to the second generation, if at all. Since in many other clusters this fraction is about two thirds, we conclude that the fraction of first/second generation in globular clusters may be strongly variable. In addition, the wide range in colour of chemically homogeneous first-generation HB stars requires a considerable spread in mass loss (>0.10 Mo). The reason for this spread is yet to be understood. Finally, we found a high Ba abundance, with a statistically significant radial abundance gradient.
110 - E. Dalessandro 2010
We present an accurate analysis of the peculiar Horizontal Branch (HB) of the massive Galactic globular cluster NGC 2808, based on high-resolution far-UV and optical images of the central region of the cluster obtained with HST. We confirm the multim odal distribution of stars along the HB: 4 sub-populations separated by gaps are distinguishable. The detailed comparison with suitable theoretical models showed that (i) it is not possible to reproduce the luminosity of the entire HB with a single helium abundance, while an appropriate modeling is possible for three HB groups by assuming different helium abundances in the range 0.24 < Y < 0.4 that are consistent with the multiple populations observed in the Main Sequence; (ii) canonical HB models are not able to properly match the observational properties of the stars populating the hottest end of the observed HB distribution, the so called blue-hook region. These objects are probably hot-flashers , stars that peel off the red giant branch before reaching the tip and ignite helium at high effective temperatures. Both of these conclusions are based on the luminosity of the HB in the optical and UV bands and do not depend on specific assumptions about mass loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا