ﻻ يوجد ملخص باللغة العربية
We prove sharp bounds for the product and the sum of the hyperbolic lengths of a pair of hyperbolic adjacent sides of hyperbolic Lambert quadrilaterals in the unit disk. We also show the Holder convexity of the inverse hyperbolic sine function involved in the hyperbolic geometry.
We prove sharp bounds for the product and the sum of two hyperbolic distances between the opposite sides of hyperbolic Lambert quadrilaterals in the unit disk. Furthermore, we study the images of Lambert quadrilaterals under quasiconformal mappings f
Four points ordered in the positive order on the unit circle determine the vertices of a quadrilateral, which is considered either as a euclidean or as a hyperbolic quadrilateral depending on whether the lines connecting the vertices are euclidean or
We calculate the Jacobian matrix of the dihedral angles of a generalized hyperbolic tetrahedron as functions of edge lengths and find the complete set of symmetries of this matrix.
A dimension reduction for the hyperbolic space is established. When points are far apart an embedding with bounded distortion into the hyperbolic plane is achieved.
Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the o