ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressive Pattern Matching on Multispectral Data

153   0   0.0 ( 0 )
 نشر من قبل Sylvain Rousseau
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new constrained minimization problem that performs template and pattern detection on a multispectral image in a compressive sensing context. We use an original minimization problem from Guo and Osher that uses $L_1$ minimization techniques to perform template detection in a multispectral image. We first adapt this minimization problem to work with compressive sensing data. Then we extend it to perform pattern detection using a formal transform called the spectralization along a pattern. That extension brings out the problem of measurement reconstruction. We introduce shifted measurements that allow us to reconstruct all the measurement with a small overhead and we give an optimality constraint for simple patterns. We present numerical results showing the performances of the original minimization problem and the compressed ones with different measurement rates and applied on remotely sensed data.



قيم البحث

اقرأ أيضاً

Haskell is a popular choice for hosting deeply embedded languages. A recurring challenge for these embeddings is how to seamlessly integrate user defined algebraic data types. In particular, one important, convenient, and expressive feature for creat ing and inspecting data -- pattern matching -- is not directly available on embedded terms. In this paper, we present a novel technique, embedded pattern matching, which enables a natural and user friendly embedding of user defined algebraic data types into the embedded language. Our technique enables users to pattern match on terms in the embedded language in much the same way they would in the host language.
A recent paper cite{CaeCaeSchBar06} proposed a provably optimal, polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Their fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph which is also globally rigid but has an advantage over the graph proposed in cite{CaeCaeSchBar06}: its maximal clique size is smaller, rendering inference significantly more efficient. However, our graph is not chordal and thus standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that of cite{CaeCaeSchBar06} when there is noise in the point patterns.
The image-to-GPS verification problem asks whether a given image is taken at a claimed GPS location. In this paper, we treat it as an image verification problem -- whether a query image is taken at the same place as a reference image retrieved at the claimed GPS location. We make three major contributions: 1) we propose a novel custom bottom-up pattern matching (BUPM) deep neural network solution; 2) we demonstrate that the verification can be directly done by cross-checking a perspective-looking query image and a panorama reference image, and 3) we collect and clean a dataset of 30K pairs query and reference. Our experimental results show that the proposed BUPM solution outperforms the state-of-the-art solutions in terms of both verification and localization.
We investigate the problem of deterministic pattern matching in multiple streams. In this model, one symbol arrives at a time and is associated with one of s streaming texts. The task at each time step is to report if there is a new match between a f ixed pattern of length m and a newly updated stream. As is usual in the streaming context, the goal is to use as little space as possible while still reporting matches quickly. We give almost matching upper and lower space bounds for three distinct pattern matching problems. For exact matching we show that the problem can be solved in constant time per arriving symbol and O(m+s) words of space. For the k-mismatch and k-difference problems we give O(k) time solutions that require O(m+ks) words of space. In all three cases we also give space lower bounds which show our methods are optimal up to a single logarithmic factor. Finally we set out a number of open problems related to this new model for pattern matching.
We consider a class of pattern matching problems where a normalising transformation is applied at every alignment. Normalised pattern matching plays a key role in fields as diverse as image processing and musical information processing where applicat ion specific transformations are often applied to the input. By considering the class of polynomial transformations of the input, we provide fast algorithms and the first lower bounds for both new and old problems. Given a pattern of length m and a longer text of length n where both are assumed to contain integer values only, we first show O(n log m) time algorithms for pattern matching under linear transformations even when wildcard symbols can occur in the input. We then show how to extend the technique to polynomial transformations of arbitrary degree. Next we consider the problem of finding the minimum Hamming distance under polynomial transformation. We show that, for any epsilon>0, there cannot exist an O(n m^(1-epsilon)) time algorithm for additive and linear transformations conditional on the hardness of the classic 3SUM problem. Finally, we consider a version of the Hamming distance problem under additive transformations with a bound k on the maximum distance that need be reported. We give a deterministic O(nk log k) time solution which we then improve by careful use of randomisation to O(n sqrt(k log k) log n) time for sufficiently small k. Our randomised solution outputs the correct answer at every position with high probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا