ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Density Profile for Cosmic Voids

111   0   0.0 ( 0 )
 نشر من قبل Nico Hamaus
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in $Lambda$CDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., Mon. Not. R. Astron. Soc. 442, 462 (2014)] the presented density profile is shown to be universal even across tracer type, properly describing voids defined in halo and galaxy distributions of varying sparsity, allowing us to relate various void populations by simple rescalings. This provides a powerful framework to match theory and simulations with observational data, opening up promising perspectives to constrain competing models of cosmology and gravity.



قيم البحث

اقرأ أيضاً

We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation functi on and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about $2h^{-1}{rm Mpc}$. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter $beta$ at two median redshifts, $beta(bar{z}=0.32)=0.599^{+0.134}_{-0.124}$ and $beta(bar{z}=0.54)=0.457^{+0.056}_{-0.054}$, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild $2sigma$ deviation at $bar{z}=0.32$, which increases to $3sigma$ when the data is restricted to the lowest available redshift range of $0.15<z<0.33$.
We study the evolution of the cross-correlation between voids and the mass density field - i.e. of void profiles. We show that approaches based on the spherical model alone miss an important contribution to the evolution on large scales of most inter est to cosmology: they fail to capture the well-known fact that the large-scale bias factor of conserved tracers evolves. We also show that the operations of evolution and averaging do not commute, but this difference is only significant within about two effective radii. We show how to include a term which accounts for the evolution of bias, which is directly related to the fact that voids move. The void motions are approximately independent of void size, so they are more significant for smaller voids that are typically more numerous. This term also contributes to void-matter pairwise velocities: including it is necessary for modeling the typical outflow speeds around voids. It is, therefore, important for void redshift space distortions. Finally, we show that the excursion set peaks/troughs approach provides a useful, but not perfect framework for describing void profiles and their evolution.
Aims: We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies. We investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. We focus on the evolution of the mean void ellipticity and its underlying physical cause. Methods: We analyse the morphological properties of voids in five sets of cosmological N-body simulations, each with a different nature of dark energy. Comparing voids in the dark matter distribution to those in the halo population, we address the question of whether galaxy redshift surveys yield sufficiently accurate void morphologies. Voids are identified using the parameter free Watershed Void Finder. The effect of redshift distortions is investigated as well. Results: We confirm the statistically significant sensitivity of voids in the dark matter distribution. We identify the level of clustering as measured by sigma_8(z) as the main cause of differences in mean void shape <epsilon>. We find that in the halo and/or galaxy distribution it is practically unfeasible to distinguish at a statistically significant level between the various cosmologies due to the sparsity and spatial bias of the sample.
We determine the distribution of cosmic string loops directly from simulations, rather than determining the loop production function and inferring the loop distribution from that. For a wide range of loop lengths, the results agree well with a power law exponent -2.5 in the radiation era and -2 in the matter era, the universal result for any loop production function that does not diverge at small scales. Our results extend those of Ringeval, Sakellariadou, and Bouchet: we are able to run for 15 times longer in conformal time and simulate a volume 300-2400 times larger. At the times they reached, our simulation is in general agreement with the more negative exponents they found, -2.6 and -2.4. However, our simulations show that this was a transient regime; at later times the exponents decline to the values above. This provides further evidence against models with a rapid divergence of the loop density at small scales, such as ``model 3 used to analyze LIGO data and predict LISA sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا