ترغب بنشر مسار تعليمي؟ اضغط هنا

Information processing with topologically protected vortex memories in exciton-polariton condensates

111   0   0.0 ( 0 )
 نشر من قبل Helgi Sigurdsson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in a non-equilibrium system of an exciton-polariton condensate, where polaritons are generated from incoherent pumping, a ring-shaped pump allows for stationary vortex memory elements of topological charge $m = 1$ or $m = -1$. Using simple potential guides we can choose whether to copy the same charge or invert it onto another spatially separate ring pump. Such manipulation of binary information opens the possibility of a new type processing using vortices as topologically protected memory components.

قيم البحث

اقرأ أيضاً

Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a sup erposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
We introduce the phenomenon of spiraling vortices in driven-dissipative (non-equilibrium) exciton-polariton condensates excited by a non-resonant pump beam. At suitable low pump intensities, these vortices are shown to spiral along circular trajector ies whose diameter is inversely proportional to the effective mass of the polaritons, while the rotation period is mass independent. Both diameter and rotation period are inversely proportional to the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually-interacting vortices are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe more complex vortex trajectories resembling Spirograph patterns.
Exciton-polaritons are a coherent electron-hole-photon (e-h-p) system where condensation has been observed in semiconductor microcavities. In contrast to equilibrium Bose-Einstein condensation (BEC) for long lifetime systems, polariton condensates ha ve a dynamical nonequilibrium feature owing to the similar physical structure that they have to semiconductor lasers. One of the distinguishing features of a condensate to a laser is the presence of strong coupling between the matter and photon fields. Irrespective of its equilibrium or nonequilibrium nature, exciton-polariton have been observed to maintain strong coupling. We show that by investigating high density regime of exciton-polariton condensates, the negative branch directly observed in photoluminescence. This is evidence that the present e-h-p system is still in the strong coupling regime, contrary to past results where the system reduced to standard lasing at high density.
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton inter- action generates complex dynamics in the weak-lasing domai n way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak dis- tributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomo- geneous line broadening.
For a coherent quantum mechanical two-level system driven with a linearly time-dependent detuning, the Landau-Zener model has served over decades as a textbook model of quantum dynamics. A particularly intriguing question is whether that framework ca n be extended to capture an intrinsical nonequilibrium nature for a quantum system with coherent and dissipative dynamics occurring on an equal footing. In this work, we are motivated to investigate the Landau-Zenner problem of polariton condensates in a periodic potential under nonresonant pumping, considering driven-dissipative Gross-Pitaevskii equations coupled to the rate equation of a reservoir. Using a two-mode approach, we find fluctuation of the reservoir can be considered as a constant and the relative phase plays a very important role. The evolution of the dissipative Landau-Zener model we obtain presents its adiabatic process very different from the closed system because the fluctuation of the reservoir has a peak and leads to the damping of the condensates. We substitute the fluctuation of the reservoir to Hamiltonian and get an effective two-level model. The motion of Hamiltonian in phase space is also discussed and is directly corresponding to the pumping rate. The instability of the band structure can also be studied by the curvatures in phase space and there may be two loops in the middle of the Brillouin zone when the pumping rate is far beyond the threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا