ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Bang nucleosynthesis revisited via Trojan Horse Method measurements

125   0   0.0 ( 0 )
 نشر من قبل Carlos Bertulani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear reaction rates are among the most important input for understanding the primordial nucleosynthesis and therefore for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of 2H(d,p)3H, 2H(d,n)3He, 7Li(p,alpha)4He and 3He(d,p)4He reactions is given. These are among the most uncertain cross sections used and input for Big Bang nucleosynthesis calculations. Their measurements through the Trojan Horse Method (THM) are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3,4He and 7Li primordial abundances, which are then compared with observations.



قيم البحث

اقرأ أيضاً

We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set b aryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the baryon-to-photon ratio and the IBBN distance scale. The Li7 abundance can be brought into concordance with observed He4 and deuterium abundances by using depletion factors as high as 9.3. The WMAP constraints, however, severely limit the allowed comoving (T = 100 GK) inhomogeneity distance scale to (1.3 - 2.6)x10^5 cm.
67 - Moshe Gai 2019
Rijal, et al. in their recent publication [Phys. Rev. Lett {bf 122}, 182701 (2019), arXiv:1808.07893], on Measurement of d + $^7$Be Cross Sections for Big-Bang Nucleosynthesis (BBN), misrepresent their result, they misrepresent previous work of Parke r (72) and of Caughlan and Fowler (88), and quite possibly, contradicts the very BBN theory that has been established over the last few decades. This comment is intended to correct these misrepresentations and critically review their claims on BBN.
We study dynamical screening effects of nuclear charge on big bang nucleosynthesis (BBN). A moving ion in plasma creates a distorted electric potential leading to a screening effect which is different from the standard static Salpeter formula. We con sider the electric potential for a moving test charge, taking into account dielectric permittivity in the unmagnetized Maxwellian plasma during the BBN epoch. Based on the permittivity in a BBN plasma condition, we present the Coulomb potential for a moving nucleus, and show that enhancement factor for the screening of the potential increases the thermonuclear reaction rates by a factor order of 10^(-7). In the Gamow energy region for nuclear collisions, we find that the contribution of the dynamical screening is less than that of the static screening case, consequently which primordial abundances hardly change. Based on the effects of dynamical screening under various possible astrophysical conditions, we discuss related plasma properties required for possible changes of the thermal nuclear reactions.
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param eterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
142 - S.Q. Hou , J.J. He , A. Parikh 2014
We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|delta q|$=6$times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا