ﻻ يوجد ملخص باللغة العربية
We analyze the production cross sections and isotopic distributions of projectile-like residues in the reactions $^{112}$Sn + $^{112}$Sn and $^{124}$Sn + $^{124}$Sn at an incident beam energy of 1 GeV/nucleon measured with the FRS fragment separator at the GSI laboratory. Calculations within the statistical multifragmentation model (SMM) for an ensemble of excited sources were performed with ensemble parameters determined previously for similar reactions at 600 MeV/nucleon. The obtained good agreement with the experiment establishes the universal properties of the excited spectator systems produced during the dynamical stage of the reaction. It is furthermore confirmed that a significant reduction of the symmetry-energy term at the freeze-out stage of reduced density and high temperature is necessary to reproduce the experimental isotope distributions. A trend of decreasing symmetry energy for large neutron-rich fragments of low excitation energy is interpreted as a nuclear-structure effect.
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at mid-rapidity in semi-peripheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show la
Single-particle kinetic energy spectra and two-particle small angle correlations of protons ($p$), deuterons ($d$) and tritons ($t$) have been measured simultaneously in 61A MeV $^{36}$Ar + $^{27}$Al, $^{112}$Sn and $^{124}$Sn collisions. Characteris
We have investigated the isoscalar giant monopole resonance (GMR) in the Sn isotopes, using inelastic scattering of 400-MeV $alpha$-particles at extremely forward angles, including 0 deg. A value of -550 pm 100 MeV has been obtained for the asymmetry term, $K_tau$, in the nuclear incompressibility.
We study pre-equilibrium giant dipole resonance excitation and fusion in the neutron-rich system $^{132}$Sn+$^{48}$Ca at energies near the Coulomb barrier, and we compare photon yields and total fusion cross sections to those of the stable system $^{
The relative importance of neutron transfer and breakup process in reaction around Coulomb barrier energies have been studied for the $^{7}$Li+$^{124}$Sn system. Coupled channel calculations have been performed to understand the one neutron stripping